Opuscula Math. 35, no. 2 (2015), 235-250
http://dx.doi.org/10.7494/OpMath.2015.35.2.235
Opuscula Mathematica
ILU preconditioning based on the FAPINV algorithm
Davod Khojasteh Salkuyeh
Amin Rafiei
Hadi Roohani
Abstract. A technique for computing an ILU preconditioner based on the factored approximate inverse (FAPINV) algorithm is presented. We show that this algorithm is well-defined for H-matrices. Moreover, when used in conjunction with Krylov-subspace-based iterative solvers such as the GMRES algorithm, results in reliable solvers. Numerical experiments on some test matrices are given to show the efficiency of the new ILU preconditioner.
Keywords: system of linear equations, preconditioner, FAPINV, ILU preconditioner, H-matrix, GMRES.
Mathematics Subject Classification: 65F10, 65F50.
- M. Benzi, Preconditioning techniques for large linear systems: A survey, J. of Computational Physics 182 (2002), 418-477.
- M. Benzi, J.K. Cullum, M. Tuma, C.D. Meyer, Robust approximate inverse preconditioning for the conjugate gradient Method, SIAM J. Sci. Comput. 22 (2000), 1318-1332.
- M. Benzi, W.D. Joubert, G. Mateescu, Numercal experiments with parallel orderings for ILU preconditioners, ETNA 8 (1999), 88-114.
- M. Benzi, C.D. Meyer, M. Tuma, A sparse approximate inverse preconditioner for the conjugate gradient method, SIAM J. Sci. Comput. 17 (1996), 1135-1149.
- M. Benzi, D.B. Szyld, A. van Duin, Ordering for incomplete factorization preconditioning of nonsymmetric problems, SIAM J. Sci. Comput. 20 (1999), 1652-1670.
- M. Benzi, M. Tuma, A sparse approximate inverse preconditioner for nonsymmetric linear systems, SIAM J. Sci. Comput. 19 (1998), 968-994.
- M. Benzi, M. Tuma, A comparative study of sparse approximate inverse preconditioners, Appl. Numer. Math. 30 (1999), 305-340.
- M. Benzi, M. Tuma, A robust incomplete factorization preconditioner for positive definite matrices, Numer. Linear Algebra Appl. 10 (2003), 385-400.
- T. Davis, University of Florida sparse matrix collection, NA Digest, 92 (1994), http://www.cise.ufl.edu/research/sparse/matrices
- G. Karypis, V. Kumar, Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs, SIAM J. Sci. Comput. 20 (1998) 1, 359-392.
- S.A. Kharchenko, L.Yu. Kolotilina, A.A. Nikishin, A.Yu. Yeremin, A robust AINV-type method for constructing sparse approximate inverse preconditioners in factored form, Numer. Linear Algebra Appl. 8 (2001), 165-179.
- L.Y. Kolotilina, A.Y. Yeremin, Factorized sparse approximate inverse preconditioning I. Theory, SIAM J. Matrix Anal. Appl. 14 (1993), 45-58.
- L.Y. Kolotilina, A.Y. Yeremin, Factorized sparse approximate inverse preconditioning II: Solution of 3D FE systems on massively parallel computers, Int. J. High Speed Comput. 7 (1995), 191-215.
- E.-J. Lee, J. Zhang, A two-phase preconditioning strategy of sparse approximate inverse for indefinite matrices, Technical Report No. 476-07, Department of Computer Science, University of Kentuky, Lexington, KY, 2007.
- E.-J. Lee, J. Zhang, Fatored approximate inverse preonditioners with dynamic sparsity patterns, Technial Report No. 488-07, Department of Computer Science, University of Kentuky, Lexington, KY, 2007.
- N. Li, Y. Saad, E. Chow, Crout version of ILU for general sparse matrices, SIAM J. Sci. Comput. 25 (2003) 2, 716-728.
- J.-G. Luo, A new class of decomposition for symmetric systems, Mechanics Research Communications, 19 (1992), 159-166.
- J.-G. Luo, An incomplete inverse as a preconditioner for the conjugate gradient method, Comput. Math. Appl. 25 (1993), 73-79.
- J.-G. Luo, A new class of decomposition for inverting asymmetric and indefinite matrices, Comput. Math. Appl. 25 (1993), 95-104.
- T. Manteuffel, An incomplete factorization technique for positive definite linear systems, Math. Comput. 34 (1980), 473-497.
- J.A. Meijerink, H.A. van der Vorst, An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix, Math. Comput. 31 (1977), 148-162.
- G. Meurant, The block preconditioned conjugate gradient method on vector computers, BIT 24 (1984), 623-633.
- M. Rezghi, S.M. Hosseini, An ILU preconditioner for nonsymmetric positive definite matrices by using the conjugate Gram-Schmidt process, J. Comput. Appl. Math. 188 (2006), 150-164.
- Y. Saad, Sparskit and sparse examples, NA Digest (1994), Accessed 2010, http://www-users.cs.umn.edu/~saad/software
- Y. Saad, ILUT: A dual theshold incomplete LU preconditioner, Numer. Linear Algebra Appl. 1 (1994), 387-402.
- Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Press, New York, 1995.
- Y. Saad, ILUM: A multi-elimination ILU preconditioner for general sparse matrices, SIAM J. Sci. Comput. 174 (1996), 830-847.
- Y. Saad, M.H. Schultz, GMRES: A generalized minimal residual algorithm for nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7 (1986), 856-869.
- Y. Saad, J. Zhang, BILUM: Block versions of multi-elimination and multilevel ILU preconditioner for general linear sparse systems, SIAM J. Sci. Comput. 20 (1999), 2103-2121.
- Y. Saad, J. Zhang, BILUTM: a domain-based multilevel block ILUT preconditioner for general sparse matrices, SIAM J. Matrix Anal. Appl. 21 (1999), 279-299.
- D.K. Salkuyeh, A sparse approximate inverse preconditioner for nonsymmetric positive definite matrices, Journal of Applied Mathematics and Informatics 28 (2010), 1131-1141.
- H.A. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 12 (1992), 631-644.
- J. Zhang, A procedure for computing factored approximate inverse, M.Sc. Dissertation, Department of Computer Science, University of Kentucky, 1999.
- J. Zhang, A sparse approximate inverse technique for parallel preconditioning of general sparse matrices, Appl. Math. Comput. 130 (2002), 63-85.
- Davod Khojasteh Salkuyeh
- University of Guilan, Faculty of Mathematical Sciences, Rasht, Iran
- Amin Rafiei
- Hakim Sabzevari University, Department of Mathematics, P.O. Box. 397, Sabzevar, Iran
- Hadi Roohani
- Malek Ashtar University of Technology, Department of Mathematics, Shahin Shar, Isfahan, P.O. Box 83145-115, Iran
- Communicated by Zdzisław Jackiewicz.
- Received: 2014-04-25.
- Revised: 2014-05-27.
- Accepted: 2014-06-07.
- Published online: 2014-11-18.