Opuscula Math. 35, no. 2 (2015), 191-197
http://dx.doi.org/10.7494/OpMath.2015.35.2.191

 
Opuscula Mathematica

A new characterization of convex φ-functions with a parameter

Bartosz Micherda

Abstract. We show that, under some additional assumptions, all projection operators onto latticially closed subsets of the Orlicz-Musielak space generated by \(\Phi\) are isotonic if and only if \(\Phi\) is convex with respect to its second variable. A dual result of this type is also proven for antiprojections. This gives the positive answer to the problem presented in Opuscula Mathematica in 2012.

Keywords: Orlicz-Musielak space, convex function, isotonic operator, projection operator, antiprojection operator.

Mathematics Subject Classification: 41A65, 39B62, 46E30.

Full text (pdf)

  1. G. Isac, On the order monotonicity of the metric projection operator, [in:] Approximation Theory, Wavelets and Applications, NATO ASI Series, Kluwer Acad. Publ., Dordrecht (1995), 365-379.
  2. G. Isac, G. Lewicki, On the property of four elements in modular spaces, Acta Math. Hungar. 83 (1999) 4, 293-301.
  3. G. Isac, A.B. Németh, Every generating isotone projection cone is latticial and correct, J. Math. Anal. Appl. 147 (1990) 1, 53-62.
  4. G. Isac, A.B. Németh, Isotone projection cones in Euclidean spaces, Ann. Sci. Math. Québec 16 (1992) 1, 35-52.
  5. G. Isac, L.E. Persson, On an inequality related to the isotonicity of the projection operator, J. Approx. Theory 86 (1996) 2, 129-143.
  6. G. Isac, L.E. Persson, Inequalities related to isotonicity of projection and antiprojection operators, Math. Inequal. Appl. 1 (1998) 1, 85-97.
  7. B. Micherda, The properties of four elements in Orlicz-Musielak spaces, Math. Inequal. Appl. 4 (2001) 4, 599-608.
  8. B. Micherda, On the latticity of projection and antiprojection sets in Orlicz-Musielak spaces, Acta Math. Hungar. 119 (2008) 1-2, 165-180.
  9. B. Micherda, A characterization of convex \(\varphi\)-functions, Opuscula Math. 32 (2012) 1, 171-178.
  10. J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer-Verlag, Berlin, 1983.
  11. M.M. Rao, Z.D. Ren, Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics 146, Marcel Dekker, Inc., New York, 1991.
  • Bartosz Micherda
  • University of Bielsko-Biała, Department of Mathematics, ul. Willowa 2, 43-309 Bielsko-Biała, Poland
  • Communicated by Henryk Hudzik.
  • Received: 2014-04-13.
  • Accepted: 2014-06-18.
  • Published online: 2014-11-18.
Opuscula Mathematica - cover

Cite this article as:
Bartosz Micherda, A new characterization of convex φ-functions with a parameter, Opuscula Math. 35, no. 2 (2015), 191-197, http://dx.doi.org/10.7494/OpMath.2015.35.2.191

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.