Opuscula Math. 35, no. 1 (2015), 117-126
http://dx.doi.org/10.7494/OpMath.2015.35.1.117

 
Opuscula Mathematica

The generalized sine function and geometrical properties of normed spaces

Tomasz Szostok

Abstract. Let \((X,\|\cdot\|)\) be a normed space. We deal here with a function \(s:X\times X\to\mathbb{R}\) given by the formula \[s(x,y):=\inf_{\lambda\in\mathbb{R}}\frac{\|x+\lambda y\|}{\|x\|}\] (for \(x=0\) we must define it separately). Then we take two unit vectors \(x\) and \(y\) such that \(y\) is orthogonal to \(x\) in the Birkhoff-James sense. Using these vectors we construct new functions \(\phi_{x,y}\) which are defined on \(\mathbb{R}\). If \(X\) is an inner product space, then \(\phi_{x,y}=\sin\) and, therefore, one may call this function a generalization of the sine function. We show that the properties of this function are connected with geometrical properties of the normed space \(X\).

Keywords: geometry of normed spaces, smoothness, strict convexity, Birkhoff-James orthogonality, conditional functional equations.

Mathematics Subject Classification: 46B20, 39B55, 39B52.

Full text (pdf)

  1. D. Amir, Characterizations of Inner Product Spaces, Birkhäuser Verlag, Basel-Boston-Stuttgart, 1986.
  2. M.M. Day, Linear Normed Spaces, Springer Verlag, New York, 1973.
  3. J. Rätz, On orthogonally additive mappings, Aequationes Math. 28 (1985), 35-49.
  4. Gy. Szabó, A conditional Cauchy equation on normed spaces, Publ. Math. Debrecen 42/3-4 (1993), 265-271.
  5. Gy. Szabó, Isosceles orthogonally additive mappings and inner product spaces, Publ. Math. Debrecen 46 (1995), 373-384.
  6. T. Szostok, Modified version of Jensen equation and orthogonal additivity, Publ. Math. Debrecen, 58 (2001), 491-504.
  7. T. Szostok, On some conditional functional equations, Ann. Math. Sil. 16 (2002), 65-77.
  8. T. Szostok, On a generalization of the sine function, Glas. Mat. Ser. III 38(58) (2003), 29-44.
  • Tomasz Szostok
  • Silesian University, Institute of Mathematics, Bankowa 14, 40-007 Katowice, Poland
  • Communicated by Karol Baron.
  • Received: 2013-11-29.
  • Revised: 2014-02-15.
  • Accepted: 2014-03-07.
  • Published online: 2014-11-12.
Opuscula Mathematica - cover

Cite this article as:
Tomasz Szostok, The generalized sine function and geometrical properties of normed spaces, Opuscula Math. 35, no. 1 (2015), 117-126, http://dx.doi.org/10.7494/OpMath.2015.35.1.117

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.