Opuscula Math. 35, no. 1 (2015), 117-126
http://dx.doi.org/10.7494/OpMath.2015.35.1.117
Opuscula Mathematica
The generalized sine function and geometrical properties of normed spaces
Abstract. Let \((X,\|\cdot\|)\) be a normed space. We deal here with a function \(s:X\times X\to\mathbb{R}\) given by the formula \[s(x,y):=\inf_{\lambda\in\mathbb{R}}\frac{\|x+\lambda y\|}{\|x\|}\] (for \(x=0\) we must define it separately). Then we take two unit vectors \(x\) and \(y\) such that \(y\) is orthogonal to \(x\) in the Birkhoff-James sense. Using these vectors we construct new functions \(\phi_{x,y}\) which are defined on \(\mathbb{R}\). If \(X\) is an inner product space, then \(\phi_{x,y}=\sin\) and, therefore, one may call this function a generalization of the sine function. We show that the properties of this function are connected with geometrical properties of the normed space \(X\).
Keywords: geometry of normed spaces, smoothness, strict convexity, Birkhoff-James orthogonality, conditional functional equations.
Mathematics Subject Classification: 46B20, 39B55, 39B52.
- D. Amir, Characterizations of Inner Product Spaces, Birkhäuser Verlag, Basel-Boston-Stuttgart, 1986.
- M.M. Day, Linear Normed Spaces, Springer Verlag, New York, 1973.
- J. Rätz, On orthogonally additive mappings, Aequationes Math. 28 (1985), 35-49.
- Gy. Szabó, A conditional Cauchy equation on normed spaces, Publ. Math. Debrecen 42/3-4 (1993), 265-271.
- Gy. Szabó, Isosceles orthogonally additive mappings and inner product spaces, Publ. Math. Debrecen 46 (1995), 373-384.
- T. Szostok, Modified version of Jensen equation and orthogonal additivity, Publ. Math. Debrecen, 58 (2001), 491-504.
- T. Szostok, On some conditional functional equations, Ann. Math. Sil. 16 (2002), 65-77.
- T. Szostok, On a generalization of the sine function, Glas. Mat. Ser. III 38(58) (2003), 29-44.
- Tomasz Szostok
- Silesian University, Institute of Mathematics, Bankowa 14, 40-007 Katowice, Poland
- Communicated by Karol Baron.
- Received: 2013-11-29.
- Revised: 2014-02-15.
- Accepted: 2014-03-07.
- Published online: 2014-11-12.