Opuscula Math. 35, no. 1 (2015), 37-46
http://dx.doi.org/10.7494/OpMath.2015.35.1.37
Opuscula Mathematica
Characterizations and decomposition of strongly Wright-convex functions of higher order
Attila Gilányi
Nelson Merentes
Kazimierz Nikodem
Zsolt Páles
Abstract. Motivated by results on strongly convex and strongly Jensen-convex functions by R. Ger and K. Nikodem in [Strongly convex functions of higher order, Nonlinear Anal. 74 (2011), 661-665] we investigate strongly Wright-convex functions of higher order and we prove decomposition and characterization theorems for them. Our decomposition theorem states that a function \(f\) is strongly Wright-convex of order \(n\) if and only if it is of the form \(f(x)=g(x)+p(x)+c x^{n+1}\), where \(g\) is a (continuous) \(n\)-convex function and \(p\) is a polynomial function of degree \(n\). This is a counterpart of Ng's decomposition theorem for Wright-convex functions. We also characterize higher order strongly Wright-convex functions via generalized derivatives.
Keywords: generalized convex function, Wright-convex function of higher order, strongly convex function.
Mathematics Subject Classification: 26A51, 39B62.
- A. Azócar, J. Giménez, K. Nikodem, J. L. Sánchez, On strongly midconvex functions, Opuscula Math. 31 (2011), 15-26.
- A. Dinghas, Zur Theorie der gewöhnlichen Differentialgleichungen, Ann. Acad. Sci. Fennicae, Ser. A I 375 (1966).
- G. Friedel, Zur Theorie der Intervallableitung reller Funktionen, Diss., Freie Univ. Berlin, 1968.
- R. Ger, K. Nikodem, Strongly convex functions of higher order, Nonlinear Anal. 74 (2011), 661-665.
- A. Gilányi, Zs. Páles, On Dinghas-type derivatives and convex functions of higher order, Real Anal. Exchange 27 (2001/2002), 485-493.
- A. Gilányi, Zs. Páles, On convex functions of higher order, Math. Inequal. Appl. 11 (2008), 271-282.
- E. Hopf, Über die Zusammenhänge zwischen gewissen höheren Differenzenquotienten reeller Funktionen einer reellen Variablen und deren Differenzierbarkeitseigenschaften, Diss., Friedrich Wilhelms Univ., Berlin, 1926.
- M.V. Jovanovič, A note on strongly convex and strongly quasiconvex functions, Math. Notes 60 (1996), 778-779.
- Z. Kominek, On additive and convex functionals, Radovi Mat. 3 (1987), 267-279.
- M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Państwowe Wydawnictwo Naukowe - Uniwersytet Śląski, Warszawa-Kraków-Katowice, 1985.
- M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, 2nd ed., Birkhäuser Verlag, 2009.
- Gy. Maksa, Zs. Páles, Decomposition of higher order Wright-convex functions, J. Math. Anal. Appl. 359 (2009), 439-443.
- N. Merentes, K. Nikodem, Remarks on strongly convex functions, Aequationes Math. 80 (2010), 193-199.
- N. Merentes, K. Nikodem, S. Rivas, Remarks on strongly Wright-convex functions, Ann. Polon. Math. 102 (2011), 271-278.
- L. Montrucchio, Lipschitz continuous policy functions for strongly concave optimization problems, J. Math. Economy 16 (1987), 259-273.
- C.T. Ng, Functions generating Schur-convex sums, [in:] W. Walter (ed.), General Inequalities 5, Oberwolfach, 1986, International Series of Numerical Mathematics, vol. 80, Birkhäuser Verlag, Basel, Boston, 1987, 433-438.
- K. Nikodem, Zs. Páles, Characterizations of inner product spaces by strongly convex functions, Banach J. Math. Anal. 5 (2011), 83-87.
- K. Nikodem, T. Rajba, Sz. Wąsowicz, Functions generating strongly Schur-convex sums, [in:] C. Bandle, A. Gilányi, L. Losonczi, M. Plum (eds.), Inequalities and Applications 2010, International Series of Numerical Mathematics, vol. 161, Birkhäuser Verlag, Basel, Boston, Berlin, 2012, 175-182.
- B.T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl. 7 (1966), 72-75.
- T. Popoviciu, Sur quelques propriétés des fonctions d'une ou de deux variables réelles, Mathematica (Cluj) 8 (1934), 1-85.
- T. Popoviciu, Les fonctions convexes, Hermann et Cie, Paris, 1944.
- T. Rajba, Sz. Wąsowicz, Probabilistic characterization of strong convexity, Opuscula Math. 31 (2011), 97-103.
- A.W. Roberts, D.E. Varberg, Convex Functions, Academic Press, New York-London, 1973.
- J.P. Vial, Strong convexity of sets and functions, J. Math. Economy 9 (1982), 187-205.
- P. Volkmann, Die Äquivalenz zweier Ableitungsbegriffe, Diss., Freie Univ. Berlin, 1971.
- Attila Gilányi
- University of Debrecen, Faculty of Informatics, Pf. 12, 4010 Debrecen, Hungary
- Nelson Merentes
- Universidad Central de Venezuela, Escuela de Matemáticas, Caracas, Venezuela
- Kazimierz Nikodem
- University of Bielsko-Biała, Department of Mathematics and Computer Science, ul. Willowa 2, 43-309 Bielsko-Biała, Poland
- Zsolt Páles
- University of Debrecen, Institute of Mathematics, Pf. 12, 4010 Debrecen, Hungary
- Communicated by Karol Baron.
- Received: 2013-09-16.
- Revised: 2014-03-11.
- Accepted: 2014-03-21.
- Published online: 2014-11-12.