Opuscula Math. 35, no. 1 (2015), 5-19
http://dx.doi.org/10.7494/OpMath.2015.35.1.5
Opuscula Mathematica
Positive solutions with specific asymptotic behavior for a polyharmonic problem on Rn
Abstract. This paper is concerned with positive solutions of the semilinear polyharmonic equation \((-\Delta)^{m} u = a(x){u}^{\alpha}\) on \(\mathbb{R}^{n}\), where \(m\) and \(n\) are positive integers with \(n\gt 2m\), \(\alpha\in (-1,1)\). The coefficient \(a\) is assumed to satisfy \[a(x)\approx{(1+|x|)}^{-\lambda}L(1+|x|)\quad \text{for}\quad x\in \mathbb{R}^{n},\] where \(\lambda\in [2m,\infty)\) and \(L\in C^{1}([1,\infty))\) is positive with \(\frac{tL'(t)}{L(t)}\longrightarrow 0\) as \(t\longrightarrow \infty\); if \(\lambda=2m\), one also assumes that \(\int_{1}^{\infty}t^{-1}L(t)dt\lt \infty\). We prove the existence of a positive solution \(u\) such that \[u(x)\approx{(1+|x|)}^{-\widetilde{\lambda}}\widetilde{L}(1+|x|) \quad\text{for}\quad x\in \mathbb{R}^{n},\] with \(\widetilde{\lambda}:=\min(n-2m,\frac{\lambda-2m}{1-\alpha})\) and a function \(\widetilde{L}\), given explicitly in terms of \(L\) and satisfying the same condition at infinity. (Given positive functions \(f\) and \(g\) on \(\mathbb{R}^{n}\), \(f\approx g\) means that \(c^{-1}g\leq f\leq cg\) for some constant \(c\gt 1\).)
Keywords: asymptotic behavior, Dirichlet problem, Schauder fixed point theorem, positive bounded solutions.
Mathematics Subject Classification: 34B18, 35B40, 35J40.
- S. Ben Othman, H. Mâagli, S. Masmoudi, M. Zribi, Exact asymptotic behavior near the boundary to the solution for singular nonlinear Dirichlet problems, Nonlinear Anal. 71 (2009), 4137-4150.
- H. Brezis, S. Kamin, Sublinear elliptic equations in \(\mathbb{R}^n\), Manuscripta Math. 74 (1992), 87-106.
- A.C. Cavalheiro, Existence results for Dirichlet problems with degenerated \(p\)-Laplacian, Opuscula Math. 33 (2013) 3, 439-453.
- R. Chemmam, A. Dhifli, H. Mâagli, Asymptotic behavior of ground state solutions for sublinear and singular nonlinear Dirichlet problems, Electron. J. Differential Equations 2011 (2011) 88, 1-12.
- R. Chemmam, H. Mâagli, S. Masmoudi, M. Zribi, Combined effects in nonlinear singular elliptic problems in a bounded domain, Adv. Nonlinear Anal. 1 (2012) 4, 391-404.
- M.G. Crandall, P.H. Rabinowitz, L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), 193-222.
- A. Dhifli, Z. Zine El Abidine, Asymptotic behavior of positive solutions of a semilinear polyharmonic problem in the unit ball, Nonlinear Anal. 75 (2012), 625-636.
- A.L. Edelson, Entire solutions of singular elliptic equations, J. Math. Anal. 139 (1989), 523-532.
- A. Ghanmi, H. Mâagli, V. Rădulescu, N. Zeddini, Large and bounded solutions for a class of nonlinear Schrödinger stationary systems, Anal. Appl. (Singap.) 7 (2009) 4, 391-404.
- M. Ghergu, V.D. Radulescu, Bifurcation and asymptotics for the Lane-Emden-Fowler equation, C.R. Acad. Sci. Paris. Ser. I 337 (2003), 259-264.
- M. Ghergu, V.D. Radulescu, Sublinear singular elliptic problems with two parameters, J. Differential Equations 195 (2003), 520-536.
- M. Ghergu, V.D. Radulescu, Ground state solutions for the singular Lane-Emden-Fowler equation with sublinear convection term, J. Math. Anal. Appl. 333 (2007), 265-273.
- S. Gontara, H. Mâagli, S. Masmoudi, S. Turki, Asymptotic behavior of positive solutions of a singular nonlinear Dirichlet, J. Math. Anal. Appl. 369 (2010), 719-729.
- A.V. Lair, A.W. Shaker, Classical and weak solutions of a singular semilinear elliptic problem, J. Math. Anal. Appl. 211 (1997), 371-385.
- A.C. Lazer, P.J. Mckenna, On a singular nonlinear elliptic bondary-value problem, Proc. Amer. Math. Soc 111 (1991), 721-730.
- H. Mâagli, Asymptotic behavior of positive solutions of a semilinear Dirichlet problem, Nonlinear Anal. 74 (2011), 2941-2947.
- H. Mâagli, M. Zribi, Existence of positive solutions for some polyharmonic nonlinear equations in \(\mathbb{R}^{n}\), Abstr. Appl. Anal. 2006 (2005), 1-24.
- C.A. Santos, On ground state solutions for singular and semilinear problems including super linear terms at infinity, Nonlinear Anal. 71 (2009), 6038-6043.
- R. Seneta, Regular Varying Functions, Lecture Notes in Math., vol. 508, Springer-Verlag, Berlin, 1976.
- S. Turki, Existence and asymptotic behavior of positive continuous solutions for a nonlinear elliptic system in the half space, Opuscula Math. 32 (2012) 4, 783-795.
- Z. Zhang, The asymptotic behaviour of the unique solution for the singular Lane-Emdem-Fowler equation, J. Math. Anal. Appl. 312 (2005), 33-43.
- Abdelwaheb Dhifli
- Campus Universitaire, Faculté des Sciences de Tunis, Département de Mathématiques, 2092 Tunis, Tunisia
- Communicated by Vicentiu D. Radulescu.
- Received: 2014-03-03.
- Revised: 2014-04-04.
- Accepted: 2014-04-24.
- Published online: 2014-11-12.