Opuscula Math. 34, no. 2 (2014), 271-290
http://dx.doi.org/10.7494/OpMath.2014.34.2.271
Opuscula Mathematica
On a singular nonlinear Neumann problem
Abstract. We investigate the solvability of the Neumann problem involving two critical exponents: Sobolev and Hardy-Sobolev. We establish the existence of a solution in three cases: \(\text{(i)}\;\ 2\lt p+1\lt 2^*(s),\) \(\text{(ii)}\;\ p+1=2^*(s)\) and \(\text{(iii)}\;\ 2^*(s)\lt p+1 \leq 2^*,\) where \(2^*(s)=\frac{2(N-s)}{N-2},\) \(0\lt s\lt 2,\) and \(2^*=\frac{2N}{N-2}\) denote the critical Hardy-Sobolev exponent and the critical Sobolev exponent, respectively.
Keywords: Neumann problem, critical Sobolev exponent, Hardy-Sobolev exponent Neumann problem.
Mathematics Subject Classification: 35B33, 35J20, 35J65.
- Jan Chabrowski
- University of Queensland, Department of Mathematics, St. Lucia 4072, Qld, Australia
- Received: 2013-08-05.
- Accepted: 2013-11-07.