Opuscula Math. 34, no. 1 (2014), 15-28
http://dx.doi.org/10.7494/OpMath.2014.34.1.15

 
Opuscula Mathematica

Existence and uniqueness of the solutions of some degenerate nonlinear elliptic equations

Albo Carlos Cavalheiro

Abstract. In this paper we are interested in the existence of solutions for the Dirichlet problem associated with degenerate nonlinear elliptic equations \[\begin{split}&-\sum_{j=1}^n D_j{\bigl[}{\omega}(x) {\cal A}_j(x, u, {\nabla}u){\bigr]} + b(x, u, {\nabla}u)\,{\omega}(x) + g(x)\,u(x)=\\&= f_0(x) - \sum_{j=1}^nD_jf_j(x) \quad{\rm on}\quad {\Omega}\end{split}\] in the setting of the weighted Sobolev spaces \({\rm W}_0^{1,p}(\Omega, \omega)\).

Keywords: degenerate nonlinear elliptic equations, weighted Sobolev spaces.

Mathematics Subject Classification: 35J70, 35J60.

Full text (pdf)

  • Albo Carlos Cavalheiro
  • State University of Londrina, Department of Mathematics, Londrina – PR – Brazil, 86057-970
  • Received: 2013-06-27.
  • Accepted: 2012-08-01.
Opuscula Mathematica - cover

Cite this article as:
Albo Carlos Cavalheiro, Existence and uniqueness of the solutions of some degenerate nonlinear elliptic equations, Opuscula Math. 34, no. 1 (2014), 15-28, http://dx.doi.org/10.7494/OpMath.2014.34.1.15

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.