Opuscula Math. 33, no. 4 (2013), 697-700
http://dx.doi.org/10.7494/OpMath.2013.33.4.697

 
Opuscula Mathematica

A note on bounded harmonic functions over homogeneous trees

Francisco Javier González Vieli

Abstract. Let \(\mathcal{T}_k\) be the homogeneous tree of degree \(k\geq 3\). J.M. Cohen and F. Colonna have proved that if \(f\) is a bounded harmonic function on \(\mathcal{T}_k\), then \(|f(x)-f(y)|\leq \|f\|_\infty\cdot 2(k-2)/k\) for any adjacent vertices \(x\) and \(y\) in \(\mathcal{T}_k\). We give here a new and very simple proof of this inequality.

Keywords: bounded harmonic function, homogeneous tree.

Mathematics Subject Classification: 31C20, 05C05, 05C63.

Full text (pdf)

  • Francisco Javier González Vieli
  • Montoie 45, 1007 Lausanne, Switzerland
  • Received: 2013-04-22.
  • Accepted: 2013-05-22.
Opuscula Mathematica - cover

Cite this article as:
Francisco Javier González Vieli, A note on bounded harmonic functions over homogeneous trees, Opuscula Math. 33, no. 4 (2013), 697-700, http://dx.doi.org/10.7494/OpMath.2013.33.4.697

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.