Opuscula Math. 33, no. 2 (2013), 373-390
http://dx.doi.org/10.7494/OpMath.2013.33.2.373
Opuscula Mathematica
Existence of critical elliptic systems with boundary singularities
Abstract. In this paper, we are concerned with the existence of positive solutions of the following nonlinear elliptic system involving critical Hardy-Sobolev exponent \begin{equation*}\label{eq:1}(*) \left\{ \begin{array}{lll} -\Delta u= \frac{2\alpha}{\alpha+\beta}\frac{u^{\alpha-1}v^\beta}{|x|^s}-\lambda u^p, & \quad {\rm in}\quad \Omega,\\[2mm] -\Delta v= \frac{2\beta}{\alpha+\beta}\frac{u^\alpha v^{\beta-1}}{|x|^s}-\lambda v^p, & \quad {\rm in}\quad \Omega,\\[2mm] u\gt 0, v\gt 0, &\quad {\rm in}\quad \Omega,\\[2mm] u=v=0, &\quad {\rm on}\quad \partial\Omega, \end{array} \right. \end{equation*} where \(N\geq 4\) and \(\Omega\) is a \(C^1\) bounded domain in \(\mathbb{R}^N\) with \(0\in\partial\Omega\). \(0\lt s \lt 2\), \(\alpha+\beta=2^*(s)=\frac{2(N-s)}{N-2}\), \(\alpha,\beta\gt 1\), \(\lambda\gt 0\) and \(1 \lt p\lt \frac{N+2}{N-2}\). The case when 0 belongs to the boundary of \(\Omega\) is closely related to the mean curvature at the origin on the boundary. We show in this paper that problem \((*)\) possesses at least a positive solution.
Keywords: existence, compactness, critical Hardy-Sobolev exponent, nonlinear system.
Mathematics Subject Classification: 35J57, 35B33, 35B40.
- Jianfu Yang
- Jiangxi Normal University, Department of Mathematics, Nanchang, Jiangxi 330022, P.R. China
- Yimin Zhou
- Jiangxi Normal University, Department of Mathematics, Nanchang, Jiangxi 330022, P.R. China
- Received: 2012-07-11.
- Accepted: 2012-11-15.

