Opuscula Math. 33, no. 2 (2013), 209-222
http://dx.doi.org/10.7494/OpMath.2013.33.2.209

 
Opuscula Mathematica

Fractional order Riemann-Liouville integral inclusions with two independent variables and multiple delay

Saïd Abbas
Mouffak Benchohra

Abstract. In the present paper we investigate the existence of solutions for a system of integral inclusions of fractional order with multiple delay. Our results are obtained upon suitable fixed point theorems, namely the Bohnenblust-Karlin fixed point theorem for the convex case and the Covitz-Nadler for the nonconvex case.

Keywords: integral inclusion, left-sided mixed Riemann-Liouville integral, time delay solution, fixed point.

Mathematics Subject Classification: 26A33.

Full text (pdf)

  • Saïd Abbas
  • Université de Saïda, Laboratoire de Mathématiques, B.P. 138, 20000, Saïda, Algeria
  • Mouffak Benchohra
  • Université de Sidi Bel-Abbès, Laboratoire de Mathématiques, B.P. 89, 22000, Sidi Bel-Abbès, Algeria
  • Received: 2012-01-18.
  • Revised: 2012-07-12.
  • Accepted: 2012-08-28.
Opuscula Mathematica - cover

Cite this article as:
Saïd Abbas, Mouffak Benchohra, Fractional order Riemann-Liouville integral inclusions with two independent variables and multiple delay, Opuscula Math. 33, no. 2 (2013), 209-222, http://dx.doi.org/10.7494/OpMath.2013.33.2.209

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.