Opuscula Math. 32, no. 2 (2012), 357-375
http://dx.doi.org/10.7494/OpMath.2012.32.2.357

 
Opuscula Mathematica

Planar nonautonomous polynomial equations IV. Nonholomorphic case

Paweł Wilczyński

Abstract. We give a few sufficient conditions for the existence of periodic solutions of the equation \(\dot{z}=\sum_{j=0}^n a_j(t)z^j-\sum_{k=1}^r c_k(t)\overline{z}^k\) where \(n \gt r\) and \(a_j\)'s, \(c_k\)'s are complex valued. We prove the existence of one up to two periodic solutions.

Keywords: periodic orbits, polynomial equations.

Mathematics Subject Classification: 34C25, 34C37.

Full text (pdf)

  • Paweł Wilczyński
  • Jagiellonian University, Institute of Mathematics, ul. Łojasiewicza 6, 30-348 Kraków, Poland
  • Institute of Mathematics, Polish Academy of Sciences, ul. Sniadeckich 8, P.O. Box 21, 00-956 Warszawa, Poland
  • Received: 2011-04-06.
  • Revised: 2011-06-15.
  • Accepted: 2011-06-15.
Opuscula Mathematica - cover

Cite this article as:
Paweł Wilczyński, Planar nonautonomous polynomial equations IV. Nonholomorphic case, Opuscula Math. 32, no. 2 (2012), 357-375, http://dx.doi.org/10.7494/OpMath.2012.32.2.357

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.