Opuscula Math. 32, no. 1 (2012), 91-113
http://dx.doi.org/10.7494/OpMath.2012.32.1.91

 
Opuscula Mathematica

On the existence of positive continuous solutions for some polyharmonic elliptic systems on the half space

Zagharide Zine El Abidine

Abstract. We study the existence of positive continuous solutions of the nonlinear polyharmonic system \((-\Delta)^m u + \lambda q g(v) = 0\); \((-\Delta)^m v + \mu p f(u) = 0\) in the half space \(\mathbb{R}^n_+:=\{x = (x_1,...,x_n) \in \mathbb{R}^n : x_n \gt 0\}\), where \(m \geq 1\) and \(n \gt 2m\). The nonlinear term is required to satisfy some conditions related to the Kato class \(K^{\infty}_{m,n}(\mathbb{R}^n_+)\). Our arguments are based on potential theory tools associated to \((-\Delta)^m\) and properties of functions belonging to \(K^{\infty}_{m,n}(\mathbb{R}^n_+)\).

Keywords: polyharmonic elliptic system, Green function, Kato class, positive continuous solution, Schauder fixed point theorem.

Mathematics Subject Classification: 34B27, 35J40.

Full text (pdf)

  • Zagharide Zine El Abidine
  • Département de Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
  • Received: 2010-11-10.
  • Revised: 2011-02-02.
  • Accepted: 2011-02-02.
Opuscula Mathematica - cover

Cite this article as:
Zagharide Zine El Abidine, On the existence of positive continuous solutions for some polyharmonic elliptic systems on the half space, Opuscula Math. 32, no. 1 (2012), 91-113, http://dx.doi.org/10.7494/OpMath.2012.32.1.91

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.