Opuscula Math. 32, no. 1 (2012), 137-151
http://dx.doi.org/10.7494/OpMath.2012.32.1.137
Opuscula Mathematica
Integral representation of functions of bounded second Φ-variation in the sense of Schramm
José Giménez
Nelson Merentes
Sergio Rivas
Abstract. In this article we introduce the concept of second \(\Phi\)-variation in the sense of Schramm for normed-space valued functions defined on an interval \([a,b] \subset \mathbb{R}\). To that end we combine the notion of second variation due to de la Vallée Poussin and the concept of \(\varphi\)-variation in the sense of Schramm for real valued functions. In particular, when the normed space is complete we present a characterization of the functions of the introduced class by means of an integral representation. Indeed, we show that a function \(f \in \mathbb{X}^{[a,b]}\) (where \(\mathbb{X}\) is a reflexive Banach space) is of bounded second \(\Phi\)-variation in the sense of Schramm if and only if it can be expressed as the Bochner integral of a function of (first) bounded variation in the sense of Schramm.
Keywords: Young function, \(\Phi\)-variation, second \(\Phi\)-variation of a function.
Mathematics Subject Classification: 26B30, 26B35.
- José Giménez
- Universidad de Los Andes, Departamento de Matemáticas, Facultad de Ciencias, Mérida, Venezuela
- Nelson Merentes
- Universidad Central de Venezuela, Escuela de Matemáticas, Caracas, Venezuela
- Sergio Rivas
- Universidad Nacional Abierta, Departamento de Matemáticas, Caracas, Venezuela
- Received: 2010-08-16.
- Revised: 2011-11-28.
- Accepted: 2011-11-30.