Opuscula Math. 31, no. 1 (2011), 15-26

Opuscula Mathematica

On strongly midconvex functions

Antonio Azócar
José Giménez
Kazimierz Nikodem
José Luis Sánchez

Abstract. In this paper we collect some properties of strongly midconvex functions. First, counterparts of the classical theorems of Bernstein-Doetsch, Ostrowski and Sierpinski are presented. A version of Rodé support theorem for strongly midconvex functions and a Kuhn-type result on the relation between strongly midconvex functions and strongly \(t\)-convex functions are obtained. Finally, a connection between strong midconvexity and generalized convexity in the sense of Beckenbach is established.

Keywords: strongly convex functions, strongly midconvex functions, Bernstein-Doetsch-type theorem, Kuhn theorem, Rodé support theorem, Beckenbach convexity.

Mathematics Subject Classification: 26B25, 39B62.

Full text (pdf)

  • Antonio Azócar
  • Universidad Nacional Abierta, Departamento de Matemáticas, Caracas, Venezuela
  • José Giménez
  • Universidad de los Andes, Facultad de Ciencias, Departamento de Matemáticas, Mérida, Venezuela
  • Kazimierz Nikodem
  • University of Bielsko-Biała, Department of Mathematics and Computer Science, ul. Willowa 2, 43-309 Bielsko-Biała, Poland
  • José Luis Sánchez
  • Universidad Central de Venezuela, Escuela de Matemáticas, Caracas, Venezuela
  • Received: 2010-03-04.
  • Revised: 2010-05-05.
  • Accepted: 2010-06-06.
Opuscula Mathematica - cover

Cite this article as:
Antonio Azócar, José Giménez, Kazimierz Nikodem, José Luis Sánchez, On strongly midconvex functions, Opuscula Math. 31, no. 1 (2011), 15-26, http://dx.doi.org/10.7494/OpMath.2011.31.1.15

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.