Opuscula Math. 30, no. 1 (2010), 5-36
http://dx.doi.org/10.7494/OpMath.2010.30.1.5

 
Opuscula Mathematica

A study of chaos for processes under small perturbations II: rigorous proof of chaos

Piotr Oprocha
Paweł Wilczyński

Abstract. In the present paper we prove distributional chaos for the Poincaré map in the perturbed equation \[\dot{z}=\left(1 + e^{i\kappa t} |z|^2\right)\bar{z}^2 - N e^{-i\frac{\pi}{3}}.\] Heteroclinic and homoclinic connections between two periodic solutions bifurcating from the stationary solution \(0\) present in the system when \(N = 0\) are also discussed.

Keywords: distributional chaos, isolating segments, fixed point index, bifurcation.

Mathematics Subject Classification: 34C28, 37B30.

Full text (pdf)

  • Piotr Oprocha
  • Universidad de Murcia, Departamento de Matemáticas, Campus de Espinardo, 30100 Murcia, Spain
  • AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Kraków, Poland
  • Paweł Wilczyński
  • Jagiellonian University, Institute of Mathematics, ul. Łojasiewicza 6, 30-348 Kraków, Poland
  • Received: 2009-04-11.
  • Revised: 2009-10-05.
  • Accepted: 2009-10-14.
Opuscula Mathematica - cover

Cite this article as:
Piotr Oprocha, Paweł Wilczyński, A study of chaos for processes under small perturbations II: rigorous proof of chaos, Opuscula Math. 30, no. 1 (2010), 5-36, http://dx.doi.org/10.7494/OpMath.2010.30.1.5

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.