Opuscula Math. 29, no. 4 (2009), 345-364
http://dx.doi.org/10.7494/OpMath.2009.29.4.345
Opuscula Mathematica
Cyclability in bipartite graphs
Denise Amar
Evelyne Flandrin
Grzegorz Gancarzewicz
Abstract. Let \(G=(X,Y,E)\) be a balanced \(2\)-connected bipartite graph and \(S \subset V(G)\). We will say that \(S\) is cyclable in \(G\) if all vertices of \(S\) belong to a common cycle in \(G\). We give sufficient degree conditions in a balanced bipartite graph \(G\) and a subset \(S \subset V(G)\) for the cyclability of the set \(S\).
Keywords: graphs, cycles, bipartite graphs.
Mathematics Subject Classification: 05C20, 05C35, 05C38, 05C45.
- Denise Amar
- LaBRI Université de Bordeaux 1, 351 Coursde la Liberation, 33405 Talence, France
- Evelyne Flandrin
- LRI, UMR8623, Bâtiment 490, Université Paris-Sud, 91405 Orsay Cedex France
- Grzegorz Gancarzewicz
- AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Cracow, Poland
- Received: 2008-08-31.
- Revised: 2009-07-01.
- Accepted: 2009-07-23.

