Opuscula Math. 29, no. 2 (2009), 147-155
http://dx.doi.org/10.7494/OpMath.2009.29.2.147

 
Opuscula Mathematica

Continuous solutions of iterative equations of infinite order

Rafał Kapica
Janusz Morawiec

Abstract. Given a probability space \((\Omega,\mathcal{A}, P)\) and a complete separable metric space \(X\), we consider continuous and bounded solutions \(\varphi: X \to \mathbb{R}\) of the equations \(\varphi(x) = \int_{\Omega} \varphi(f(x,\omega))P(d\omega)\) and \(\varphi(x) = 1-\int_{\Omega} \varphi(f(x,\omega))P(d\omega)\), assuming that the given function \(f:X \times \Omega \to X\) is controlled by a random variable \(L: \Omega \to (0,\infty)\) with \(-\infty \lt \int_{\Omega} \log L(\omega)P(d\omega) \lt 0\). An application to a refinement type equation is also presented.

Keywords: random-valued vector functions, sequences of iterates, iterative equations, continuous solutions.

Mathematics Subject Classification: 45A05, 39B12, 39B52, 60B12.

Full text (pdf)

  • Rafał Kapica
  • Silesian University, Institute of Mathematics, Bankowa 14, 40-007 Katowice, Poland
  • Janusz Morawiec
  • Silesian University, Institute of Mathematics, Bankowa 14, 40-007 Katowice, Poland
  • Received: 2008-04-22.
  • Revised: 2008-11-03.
  • Accepted: 2009-03-09.
Opuscula Mathematica - cover

Cite this article as:
Rafał Kapica, Janusz Morawiec, Continuous solutions of iterative equations of infinite order, Opuscula Math. 29, no. 2 (2009), 147-155, http://dx.doi.org/10.7494/OpMath.2009.29.2.147

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.