Opuscula Math. 27, no. 1 (2007), 131-149

 
Opuscula Mathematica

[r,s,t]-colourings of paths

Marta Salvador Villà
Ingo Schiermeyer

Abstract. The concept of \([r,s,t]\)-colourings was recently introduced by Hackmann, Kemnitz and Marangio [A. Kemnitz, M. Marangio, \([r,s,t]\)-Colorings of Graphs, Discrete Math., to appear] as follows: Given non-negative integers \(r\), \(s\) and \(t\), an \([r,s,t]\)-colouring of a graph \(G=(V(G),E(G))\) is a mapping \(c\) from \(V(G) \cup E(G)\) to the colour set \(\{1,2,\ldots ,k\}\) such that \(|c(v_i)-c(v_j)| \geq r\) for every two adjacent vertices \(v_i\), \(v_j\), \(|c(e_i)-c(e_j)| \geq s\) for every two adjacent edges \(e_i\), \(e_j\), and \(|c(v_i)-c(e_j)| \geq t\) for all pairs of incident vertices and edges, respectively. The \([r,s,t]\)-chromatic number \(\chi_{r,s,t}(G)\) of \(G\) is defined to be the minimum \(k\) such that \(G\) admits an \([r,s,t]\)-colouring. In this paper, we determine the \([r,s,t]\)-chromatic number for paths.

Keywords: total colouring, paths.

Mathematics Subject Classification: 05C15, 05C38.

Full text (pdf)

  • Marta Salvador Villà
  • Graduiertenkolleg "Räumliche Statistik", Technische Universität Bergakademie Freiberg, 09596 Freiberg
  • Ingo Schiermeyer
  • Institut für Diskrete Mathematik und Algebra, Technische Universität Bergakademie Freiberg, 09596 Freiberg
  • Received: 2005-11-22.
Opuscula Mathematica - cover

Cite this article as:
Marta Salvador Villà, Ingo Schiermeyer, [r,s,t]-colourings of paths, Opuscula Math. 27, no. 1 (2007), 131-149

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.