Opuscula Math. 26, no. 3 (2006), 387-394

 
Opuscula Mathematica

Further properties of the rational recursive sequence \(x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}}\)

Anna Andruch-Sobiło
Małgorzata Migda

Abstract. In this paper we consider the difference equation \[x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}}, \quad n=0,1,...\tag{E}\] with positive parameters \(a\) and \(c\), negative parameter \(b\) and nonnegative initial conditions. We investigate the asymptotic behavior of solutions of equation \(\text{(E)}\).

Keywords: difference equation, explicit formula, positive solutions, asymptotic stability.

Mathematics Subject Classification: 39A10.

Full text (pdf)

  • Anna Andruch-Sobiło
  • Poznań University of Technology, Institute of Mathematics, Piotrowo 3A, 60-965 Poznań, Poland
  • Małgorzata Migda
  • Poznań University of Technology, Institute of Mathematics, Piotrowo 3A, 60-965 Poznań, Poland
  • Received: 2005-09-23.
Opuscula Mathematica - cover

Cite this article as:
Anna Andruch-Sobiło, Małgorzata Migda, Further properties of the rational recursive sequence \(x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}}\), Opuscula Math. 26, no. 3 (2006), 387-394

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.