Opuscula Math. 44, no. 5 (2024), 673-688
https://doi.org/10.7494/OpMath.2024.44.5.673

 
Opuscula Mathematica

Seven largest trees pack

Maciej Cisiński
Andrzej Żak

Abstract. The Tree Packing Conjecture (TPC) by Gyárfás states that any set of trees \(T_2,\dots,T_{n-1}, T_n\) such that \(T_i\) has \(i\) vertices pack into \(K_n\). The conjecture is true for bounded degree trees, but in general, it is widely open. Bollobás proposed a weakening of TPC which states that \(k\) largest trees pack. The latter is true if none tree is a star, but in general, it is known only for \(k=5\). In this paper we prove, among other results, that seven largest trees pack.

Keywords: tree, packing, tree packing conjecture.

Mathematics Subject Classification: 05C35, 05C05, 05C70.

Full text (pdf)

  1. N. Alon, R. Yuster, The Turán number of sparse spanning graphs, J. Comb. Theory Ser. B 103 (2013), no. 3, 337-343. https://doi.org/10.1016/j.jctb.2013.02.002
  2. J. Balogh, C. Palmer, On the tree packing conjecture, SIAM J. Discrete Math. 27 (2013) no. 4, 1995-2006. https://doi.org/10.1137/120902719
  3. B.A. Bourgeois, A.M. Hobbs, J. Kasiraj, Packing trees in complete graphs, Discrete Math. 67 (1987), 27-42. https://doi.org/10.1016/0012-365X(87)90164-6
  4. J. Böttcher, J. Hladký, D. Piguet, A. Taraz, An approximate version of the tree packing conjecture, Israel J. Math. 211 (2016), 391-446. https://doi.org/10.1007/s11856-015-1277-2
  5. R.L. Graham, M. Grötschel, L. Lovász (eds), Handbook of Combinatorics, vol. 1, Elsevier Science B.V., Amsterdam, 1995.
  6. R.L. Graham, M. Grötschel, L. Lovász (eds), Handbook of Combinatorics, vol. 2, Elsevier Science B.V., Amsterdam, 1995.
  7. A. Gyárfás, J. Lehel, Packing trees of different order into \(K_n\), Combinatorics, Proc. Fifth Hungarian Colloq., Keszthely, (1976), Colloq. Math. Soc. János Bolyai, vol. 18, North-Holland, Amsterdam, 1978, 463-469.
  8. B. Janzer, R. Montgomery, Packing the largest trees in the tree packing conjecture, arXiv:2403.10515, (2024).
  9. F. Joos, J. Kim, D. Kühn, D. Osthus, Optimal packings of bounded degree trees, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 12, 3573-3647. https://doi.org/10.4171/JEMS/909
  10. S. Messuti, V. Rödl, M. Schacht, Packing minor-closed families of graphs into complete graphs, J. Comb. Theory Ser. B 119 (2016), 245-265. https://doi.org/10.1016/j.jctb.2016.03.003
  11. A. Żak, Packing large trees of consecutive orders, 340 (2017), no. 2, 252-263. https://doi.org/10.1016/j.disc.2016.07.022
  • Communicated by Mirko Horňák.
  • Received: 2023-05-20.
  • Revised: 2024-05-17.
  • Accepted: 2024-05-21.
  • Published online: 2024-07-01.
Opuscula Mathematica - cover

Cite this article as:
Maciej Cisiński, Andrzej Żak, Seven largest trees pack, Opuscula Math. 44, no. 5 (2024), 673-688, https://doi.org/10.7494/OpMath.2024.44.5.673

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.