Opuscula Math. 44, no. 3 (2024), 425-438
https://doi.org/10.7494/OpMath.2024.44.3.425
Opuscula Mathematica
Reduction of positive self-adjoint extensions
Zsigmond Tarcsay
Zoltán Sebestyén
Abstract. We revise Krein's extension theory of semi-bounded Hermitian operators by reducing the problem to finding all positive and contractive extensions of the "resolvent operator" \((I+T)^{-1}\) of \(T\). Our treatment is somewhat simpler and more natural than Krein's original method which was based on the Krein transform \((I-T)(I+T)^{-1}\). Apart from being positive and symmetric, we do not impose any further constraints on the operator \(T\): neither its closedness nor the density of its domain is assumed. Moreover, our arguments remain valid in both real or complex Hilbert spaces.
Keywords: positive selfadjoint contractive extension, nonnegative selfadjoint extension, Friedrichs and Krein-von Neumann extension.
Mathematics Subject Classification: 47A57, 47A20, 47B25.
- W.N. Anderson, Shorted operators, SIAM J. Appl. Math. 20 (1971), 520-525. https://doi.org/10.1137/01200
- W.N. Anderson, G.E. Trapp, Shorted operators II, SIAM J. Appl. Math. 28 (1975), 60-71 https://doi.org/10.1137/0128007
- T. Ando, K. Nishio, Positive, selfadjoint extensions of positive symmetric operators, Tohoku Math. J. (2) 22 (1970), 65-75. https://doi.org/10.2748/tmj/1178242861
- Y.M. Arlinskiĭ, E. Tsekanovskiĭ, M. Krein's research on semi-bounded operators, its contemporary developments, and applications, [in:] Operator Theory: Advances and Applications, vol. 190, Birkhäuser, Basel, 2009, 65-112. https://doi.org/10.1007%2F978-3-7643-9919-1_5
- Y.M. Arlinskiĭ, S. Hassi, Z. Sebestyén, H.S.V. de Snoo, On the class of extremal etensions of a nonnegative operator, Recent Advances in Operator Theory and Related Topics, [in:] Operator Theory: Advances and Applications, vol. 127, Birkhäuser, Basel, 2001, 41-81. https://doi.org/10.1007/978-3-0348-8374-0_3
- G. Arsene, A. Gheondea, Completing matrix contractions, J. Operator Theory 7 (1982), 179-189.
- T. Constantinescu, A. Gheondea, Notes on (the Birmak-Krein-Vishik theory on) selfadjoint extensions of semibounded symmetric operators, INCREST Preprint Series, July 1981, Bucharest, Romania, arXiv:1807.05363, 2018. https://doi.org/10.48550/arXiv.1807.05363
- R.G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415. https://doi.org/10.2307/2035178
- H. Freudenthal, Über die Friedrichssche Fortsetzung halbbeschränkter Operatoren, Akademie van Wetenschappen te Amsterdam, Proceedings, ser. A., 39 (1936), 832-833.
- K. Friedrichs, Über die Friedrichssche Fortsetzung halbbeschränkter Operatoren, Math. Ann. 109 (1934), 465-487. https://doi.org/10.1007/BF01449150
- A. Gheondea, An Indefinite Excursion in Operator Theory. Geometric and Spectral Treks in Krein Spaces, Cambridge University Press, Cambridge, 2022. https://doi.org/10.1017/9781108979061
- P.R. Halmos, Subnormal Operators and the Subdiscrete Topology, Anniversary Volume on Approximation Theory and Functional Analysis, Birkhäuser, Basel, 1984, 49-65.
- S. Hassi, M. Malamud, H. de Snoo, On Krein's extension theory of nonnegative operators, Math. Nachr. 274-275 (2004), no. 1, 40-73. https://doi.org/10.1002/mana.200310202
- S. Hassi, A. Sandovici, H. de Snoo, H. Winkler, A general factorization approach to the extension theory of nonnegative operators and relations, J. Operator Theory 58 (2007), no. 2, 351-386.
- M.G. Krein, The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications, I, Mat. Sbornik 62 (1947), 431-495 [in Russian].
- J. von Neumann, Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren, Math. Ann. 102 (1929), 49-131. https://doi.org/10.1007/BF01782338
- V. Prokaj, Z. Sebestyén, On Friedrichs extensions of operators, Acta Sci. Math. (Szeged) 62 (1996), 243-246.
- V. Prokaj, Z. Sebestyén, On extremal positive operator extensions, Acta Sci. Math. (Szeged) 62 (1996), 485-492.
- M. Reed, B. Simon, Methods of Modern Mathematical Physics. II: Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975.
- F. Riesz, B. Sz.-Nagy, Functional Analysis, Courier Corporation, 2012.
- K. Schmüdgen, Unbounded Self-adjoint Operators on Hilbert space, Springer Science & Business Media, 2012.
- Z. Sebestyén, On ranges of adjoint operators in Hilbert space, Acta Sci. Math. (Szeged) 46 (1983), 295-298.
- Z. Sebestyén, Restrictions of positive operators, Acta Sci. Math. (Szeged) 46 (1983), 299-301.
- Z. Sebestyén, J. Stochel, Restrictions of positive self-adjoint operators, Acta Sci. Math. (Szeged) 55 (1991), 149-154.
- Z. Sebestyén, J. Stochel, Characterizations of positive selfadjoint extensions, Proc. Amer. Math. Soc. 135 (2007), 1389-1397. https://doi.org/10.1090/S0002-9939-06-08590-X
- Z. Sebestyén, J. Stochel, \(T^*T\) always has a positive selfadjoint extension, Acta Math. Hungar. 135 (2012), 116-129. https://doi.org/10.1007/s10474-011-0154-7
- Z. Sebestyén, Zs. Tarcsay, On the Krein-von Neumann and Friedrichs extension of positive operators, Acta Wasaensia 462 (2021), 165-178.
- Y.L. Shmulian, The operator integral of Hellinger, Amer. Math. Soc. Transl. 22 (1962), no. 2.
- M.H. Stone, Linear Transformations in Hilbert Space, AMS Colloquium Publications, vol. 15, 1932.
- Zsigmond Tarcsay (corresponding author)
- https://orcid.org/0000-0001-8102-5055
- Corvinus University of Budapest, Department of Mathematics, IX. Fővám tér 13-15., Budapest H-1093, Hungary
- Eötvös Loránd University, Department of Applied Analysis and Computational Mathematics, Pázmány Péter sétány 1/c., Budapest H-1117, Hungary
- Zoltán Sebestyén
- Eötvös Loránd University, Department of Applied Analysis and Computational Mathematics, Pázmány Péter sétány 1/c., Budapest H-1117, Hungary
- Communicated by Aurelian Gheondea.
- Received: 2023-01-10.
- Revised: 2023-08-10.
- Accepted: 2023-08-16.
- Published online: 2024-02-15.