Opuscula Math. 44, no. 3 (2024), 409-423
https://doi.org/10.7494/OpMath.2024.44.3.409

 
Opuscula Mathematica

Positive solutions for nonparametric anisotropic singular solutions

Nikolaos S. Papageorgiou
Vicenţiu D. Rădulescu
Xueying Sun

Abstract. We consider an elliptic equation driven by a nonlinear, nonhomogeneous differential operator with nonstandard growth. The reaction has the combined effects of a singular term and of a "superlinear" perturbation. There is no parameter in the problem. Using variational tools and truncation and comparison techniques, we show the existence of at least two positive smooth solutions.

Keywords: variable Lebesgue and Sobolev spaces, anisotropic regularity, anisotropic maximum principle, truncations and comparisons, Hardy inequality.

Mathematics Subject Classification: 35B51, 35J60, 35B65, 35J75, 35J92, 46E35, 47J20, 58E05.

Full text (pdf)

  1. Y. Bai, N.S. Papageorgiou, S. Zeng, A singular eigenvalue problem for the Dirichlet \((p,q)\)-Laplacian, Math. Z. 300 (2022), 325-345. https://doi.org/10.1007/s00209-021-02803-w
  2. S. Byun, E. Ko, Global \(C^{1,\alpha}\) regularity and existence of multiple solutions for singular \(p(x)\)-Laplacian equations, Calc. Var. Partial Differential Equations 56 (2017), Article no. 76. https://doi.org/10.1007/s00526-017-1152-6
  3. D.V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Springer Science & Business Media, 2013. https://doi.org/10.1007/978-3-0348-0548-3
  4. L. Diening, P. Harjulehto, P. Hästo, M. Ruzička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., vol. 2017, Springer, Heidelberg, 2011.
  5. X. Fan, Global \(C^{1,\alpha}\) regularity for variable exponent elliptic equations in divergence form, J. Differential Equations 235 (2007), no. 2, 397-417. https://doi.org/10.1016/j.jde.2007.01.008
  6. X. Fan, D. Zhao, A class of De Giorgi type and Hölder continuity, Nonlinear Anal. 36 (1999), 295-318. https://doi.org/10.1016/S0362-546X(97)00628-7
  7. L. Gasinski, N.S. Papageorgiou, Nonlinear Analysis, Chapman & Hall/CRC, Boca Ratom, Fl, 2006. https://doi.org/10.1201/9781420035049
  8. U. Guarnotta, S.A. Marano, A. Moussaoui, Singular quasilinear convective elliptic systems in \(\mathbb{R}^N\), Adv. Nonlinear Anal. 11 (2022), no. 1, 741-756. https://doi.org/10.1515/anona-2021-0208
  9. P. Harjulehto, P. Hästo, M. Koskenoja, Hardy's inequality in a variable exponent Sobolev space, Georgian Math. J. 12 (2005), 431-442. https://doi.org/10.1515/GMJ.2005.431
  10. N.S. Papageorgiou, Double phase problems: a survey of some recent results, Opuscula Math. 42 (2022), no. 2, 257-278. https://doi.org/10.7494/OpMath.2022.42.2.257
  11. N.S. Papageorgiou, G. Smyrlis, A bifurcation-type theorem for singular nonlinear elliptic equations, Methods Appl. Anal. 22 (2015), 147-170. https://doi.org/10.4310/MAA.2015.v22.n2.a2
  12. N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Nonlinear Analysis - Theory and Methods Springer Monographs in Mathematics, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-03430-6
  13. N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Anisotropic equations with indefinite potential and competing nonlinearities, Nonlinear Anal. 201 (2020), Article no. 111861. https://doi.org/10.1016/j.na.2020.111861
  14. N.S. Papageorgiou, V.D. Rădulescu, Y. Zhang, Anisotropic singular double phase Dirichlet problems, Discrete Contin. Dyn. Syst. Ser. S 14 (2021), 4465-4502. https://doi.org/10.3934/dcdss.2021111
  15. K. Saoudi, A. Ghanmi, A multiplicity results for a singular equation involving the \(p(x)\)-Laplace operator, Complex Var. Elliptic Equ. 62 (2017), no. 5, 695-725. https://doi.org/10.1080/17476933.2016.1238466
  16. P. Takač, J. Giacomoni, A \(p(x)\)-Laplacian extension of the Díaz-Saa inequality and some applications, Proc. Roy. Soc. Edinburgh Sect. A 150A (2020), 205-232 https://doi.org/10.1017/prm.2018.91
  17. S. Zeng, N.S. Papageorgiou, Positive solutions for \((p,q)\)-equations with convection and a sign-changing reaction, Adv. Nonlinear Anal. 11 (2022), no. 1, 40-57. https://doi.org/10.1515/anona-2020-0176
  18. Q. Zhang, A strong maximum principle for differential equations with nonstandard \(p(x)\)-growth conditions, J. Math. Anal. Appl. 312 (2005), 24-32. https://doi.org/10.1016/j.jmaa.2005.03.013
  • Nikolaos S. Papageorgiou
  • ORCID iD https://orcid.org/0000-0003-4800-1187
  • National Technical University, Department of Mathematics, Zografou Campus, Athens 15780, Greece
  • University of Craiova, Department of Mathematics, 200585 Craiova, Romania
  • Vicenţiu D. Rădulescu
  • ORCID iD https://orcid.org/0000-0003-4615-5537
  • AGH University of Krakow, Faculty of Applied Mathematics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • University of Craiova, Department of Mathematics, 200585 Craiova, Romania
  • Xueying Sun (corresponding author)
  • ORCID iD https://orcid.org/0009-0002-7598-9725
  • Harbin Engineering University, College of Mathematical Sciences, Harbin 150001, People's Republic of China
  • University of Craiova, Department of Mathematics, 200585 Craiova, Romania
  • Communicated by Marek Galewski.
  • Received: 2023-09-28.
  • Accepted: 2023-11-22.
  • Published online: 2024-02-15.
Opuscula Mathematica - cover

Cite this article as:
Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Xueying Sun, Positive solutions for nonparametric anisotropic singular solutions, Opuscula Math. 44, no. 3 (2024), 409-423, https://doi.org/10.7494/OpMath.2024.44.3.409

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.