Opuscula Math. 44, no. 3 (2024), 323-339
https://doi.org/10.7494/OpMath.2024.44.3.323
Opuscula Mathematica
Finitely additive functions in measure theory and applications
Abstract. In this paper, we consider, and make precise, a certain extension of the Radon-Nikodym derivative operator, to functions which are additive, but not necessarily sigma-additive, on a subset of a given sigma-algebra. We give applications to probability theory; in particular, to the study of \(\mu\)-Brownian motion, to stochastic calculus via generalized Itô-integrals, and their adjoints (in the form of generalized stochastic derivatives), to systems of transition probability operators indexed by families of measures \(\mu\), and to adjoints of composition operators.
Keywords: Hilbert space, reproducing kernels, probability space, Gaussian fields, transforms, covariance, Itô integration, Itô calculus, generalized Brownian motion.
Mathematics Subject Classification: 47B32, 60G20, 60G15, 60H05, 60J60, 46E22.
- S. Albeverio, L. Nizhnik, A Schrödinger operator with a \(\delta'\)-interaction on a Cantor set and Krein-Feller operators, Math. Nachr. 279 (2006), no. 5-6, 467-476. https://doi.org/10.1002/mana.200310371
- D. Alpay, On linear combination of positive functions, associated reproducing kernel spaces and a non hermitian Schur algorithm, Arch. Math. (Basel) 58 (1992), 174-182. https://doi.org/10.1007/BF01191883
- D. Alpay, A theorem on reproducing kernel Hilbert spaces of pairs, Rocky Mountain J. Math. 22 (1992), 1243-1258. https://doi.org/10.1216/rmjm/1181072652
- D. Alpay, P. Jorgensen, New characterizations of reproducing kernel Hilbert spaces and applications to metric geometry, Opuscula Math. 41 (2021), no. 3, 283-300. https://doi.org/10.7494/OpMath.2021.41.3.283
- D. Alpay, P. Jorgensen, mu-Brownian motion, dualities, diffusions, transforms, and reproducing kernel spaces, J. Theoret. Probab. 35 (2022), no. 4, 2757-2783. https://doi.org/10.1007/s10959-021-01146-w
- D. Alpay, P. Jorgensen, D. Levanony, On the equivalence of probability spaces, J. Theoret. Probab. 30 (2017), no. 3, 813-841.
- N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404. https://doi.org/10.2307/1990404
- N. Aronszajn, Quadratic forms on vector spaces, Proc. Internat. Sympos. Linear Spaces, Jerusalem, 1960, 29-87.
- S.D. Chatterji, Les martingales et leurs applications analytiques, [in:] École d'Été de Probabilités: Processus Stochastiques (Saint Flour, 1971), Lecture Notes in Math., vol. 307, Springer Verlag, 1973, 27-164. https://doi.org/10.1007/BFb0059708
- H. Dym, H.P. McKean, Gaussian Processes, Function Theory and the Inverse Spectral Problem, Probability and Mathematical Statistics, vol. 31, Academic Press, New York-London, 1976.
- W. Feller, On boundaries defined by stochastic matrices, Proc. Sympos. Appl. Math. 7 (1957), 35-40.
- U. Freiberg, Refinement of the spectral asymptotics of generalized Krein Feller operators, Forum Math. 23 (2011), no. 2, 427-445. https://doi.org/10.1515/FORM.2011.017
- T. Hida, White noise analysis and applications in random fields, [in:] Dirichlet forms and stochastic processes (Beijing, 1993), de Gruyter, Berlin, 1995, 185-189.
- K. Itô, Stochastic Processes, Springer-Verlag, Berlin, 2004.
- P. Jorgensen, F. Tian, Reproducing kernels and choices of associated feature spaces, in the form of \(L^2\)-spaces, J. Math. Anal. Appl. 505 (2022), no. 2, Article no. 125535. https://doi.org/10.1016/j.jmaa.2021.125535
- L.A. Minorics, Spectral asymptotics for Krein-Feller operators with respect to \(V\)-variable Cantor measures, Forum Math. 32 (2020), no. 1, 121-138. https://doi.org/10.1515/forum-2018-0188
- E. Nelson, Topics in Dynamics I: Flows, Mathematical Notes, Princeton University Press, Princeton, N.J., University of Tokyo Press, Tokyo, 1969.
- E. Nelson, Stochastic mechanics of particles and fields, [in:] Quantum Interaction, Lecture Notes in Comput. Sci., vol. 8369, Springer, Heidelberg, 2014, 1-5.
- J. Neveu, Processus aléatoires gaussiens, Number 34 in Séminaires de Mathématiques Supérieures, Les Presses de l'Université de Montréal, 1968.
- F. Riesz, Untersuchungen über Systeme integrierbarer Funkionen, Math. Ann. 69 (1910), 449-497. https://doi.org/10.1007/BF01457637
- L. Schwartz, Probabilités cylindriques et fonctions aléatoires, [in:] Séminaire Laurent Schwartz 1969-1970: Applications radonifiantes, Exp. No. 6, École Polytechnique, 1970, 1-8.
- Daniel Alpay (corresponding author)
https://orcid.org/0000-0002-7612-3598
- Schmid College of Science and Technology, Chapman University, One University Drive Orange, California 92866, USA
- Palle Jorgensen
https://orcid.org/0000-0003-2681-5753
- The University of Iowa, Department of Mathematics, 14C McLean Hall, Iowa City, IA 52246, USA
- Communicated by Aurelian Gheondea.
- Received: 2023-04-27.
- Accepted: 2023-07-20.
- Published online: 2024-02-15.