Opuscula Math. 44, no. 2 (2024), 267-283
https://doi.org/10.7494/OpMath.2024.44.2.267
Opuscula Mathematica
Positive solutions to a third order nonlocal boundary value problem with a parameter
Gabriela Szajnowska
Mirosława Zima
Abstract. We present some sufficient conditions for the existence of positive solutions to a third order differential equation subject to nonlocal boundary conditions. Our approach is based on the Krasnosel'skiĭ-Guo fixed point theorem in cones and the properties of the Green's function corresponding to the BVP under study. The main results are illustrated by suitable examples.
Keywords: boundary value problem, nonlocal boundary conditions, positive solution, cone.
Mathematics Subject Classification: 34B10, 34B15, 34B18, 34B27.
- A. Benmezaï, E.-D. Sedkaoui, Positive solution for singular third-order BVPs on the half line with first-order derivative dependence, Acta Univ. Sapientiae 13 (2021), 105-126. https://doi:10.2478/ausm-2021-0006
- A. Cabada, L. López-Somoza, F. Minhós, Existence, non-existence and multiplicity results for a third order eigenvalue three-point boundary value problem, J. Nonlinear Sci. Appl. 10 (2017), 5445-5463. https://doi:10.22436/jnsa.010.10.28
- J.A. Cid, G. Infante, M. Tvrdý, M. Zima, A topological approach to periodic oscillations related to the Liebau phenomenon, J. Math. Anal. Appl. 423 (2015), 1546-1556. https://doi:10.1016/j.jmaa.2014.10.054
- C.S. Goodrich, On a nonlocal BVP with nonlinear boundary conditions, Results Math. 63 (2013), 1351-1364. https://doi:10.1007/s00025-012-0272-8
- C.S. Goodrich, New Harnack inequalities and existence theorems for radially symmetric solutions of elliptic PDEs with sign changing or vanishing Green's function, J. Differential Equations 264 (2018), 236-262. https://doi.org/10.1016/j.jde.2017.09.011
- J. Graef, J.R.L. Webb, Third order boundary value problems with nonlocal boundary conditions, Nonlinear Anal. 71 (2009), 1542-1551. https://doi:10.1016/j.na.2008.12.047
- J. Graef, L. Kong, F. Minhós, Generalized Hammerstein equations and applications, Results Math. 72 (2017), 369-383. https://doi:10.1007/s00025-016-0615-y
- M. Greguš, Third Order Linear Differential Equations, Mathematics and its Applications, D. Reidel Publishing Co., Dordrecht, 1987.
- D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Boston, 1988.
- Ch.P. Gupta, On a third-order three-point boundary value problem at resonance, Differential Integral Equations 2 (1989), 1-12. https://doi:10.57262/die/1372191609
- B. Hopkins, N. Kosmatov, Third-order boundary value problems with sign-changing solutions, Nonlinear Anal. 67 (2007), 126-137. https://doi:10.1016/j.na.2006.05.003
- G. Infante, Positive and increasing solutions of perturbed Hammerstein integral equations with derivative dependence, Discrete Contin. Dyn. Syst. B 25 (2020), 691-699. https://doi:10.3934/dcdsb.2019261
- G. Infante, F. Minhós, Nontrivial solutions of systems of Hammerstein integral equations with first derivative dependence, Mediterr. J. Math. (2017) 14:242. https://doi:10.1007/s00009-017-1044-1
- W. Jiang, N. Kosmatov, Solvability of a third-order differential equation with functional boundary conditions at resonance, Bound. Value Probl. 2017 (2017), Article no. 81. https://doi:10.1186/s13661-017-0811-z
- I. Kossowski, Radial solustions for nonlinear elliptic equation with nonlinear elliptic equation nonlocal boundary conditions, Opuscula Math. 43 (2023), no. 5, 675-687. https://doi.org/10.7494/OpMath.2023.43.5.675
- L. López-Somoza, F. Minhós, Existence and multiplicity results for some generalized Hammerstein equations with a parameter, Adv. Differ. Equ. 2019 (2019), Article no. 423. https://doi:10.1186/s13662-019-2359-y
- F. Minhós, R. de Sousa, On the solvability of third-order three point systems of differential equations with dependence on the first derivative, Bull. Braz. Math. Soc. 48 (2017), 485-503 https://doi:10.1007/s00574-016-0025-5
- I. Rachůnková, On some three-point problems for third-order differential equations, Math. Bohemica 117 (1992), 98-110. https://doi:10.21136/MB.1992.126232
- J.-P. Sun, H.-B. Li, Monotone positive solution of nonlinear third-order BVP with integral boundary conditions, Bound. Value Probl. 2010 (2010), Article no. 874959. https://doi:10.1155/2010/874959
- J.R.L. Webb, G. Infante, Positive solutions of nonlocal boundary value problems: a unified approach, J. London Math. Soc. 74 (2006), 673-693. https://doi:10.1112/S0024610706023179
- J.R.L. Webb, M. Zima, Multiple positive solutions of resonant and non-resonant nonlocal boundary value problems, Nonlinear Anal. 71 (2009), 1369-1378. https://doi:10.1016/j.na.2008.12.010
- H.-E. Zhang, J.-P. Sun, Existence and iteration of monotone positive solutions for third-order nonlocal BVPs involving integral conditions, Electron. J. Qual. Theory Differ. Equ. 2012, no. 18, 1-9. https://doi:10.14232/ejqtde.2012.1.18
- H.-E. Zhang, Multiple positive solutions of nonlinear BVPs for differential systems involving integral conditions, Bound. Value Probl. 2014 (2014), Article no. 61. https://doi:10.1186/1687-2770-2014-61
- L. Zhao, W. Wang, C. Zhai, Existence and uniqueness of monotone positive solutions for a third-order three-point boundary value problem, Differ. Equ. Appl. 10 (2018), 251-260. https://doi:10.7153/dea-2018-10-18
- Gabriela Szajnowska
https://orcid.org/0000-0002-5257-9435
- University of Rzeszów, Institute of Mathematics, Pigonia 1, Rzeszów, 35-959, Poland
- Mirosława Zima (corresponding author)
https://orcid.org/0000-0002-6152-4962
- University of Rzeszów, Institute of Mathematics, Pigonia 1, Rzeszów, 35-959, Poland
- Communicated by Marek Galewski.
- Received: 2023-07-19.
- Revised: 2023-11-17.
- Accepted: 2023-11-22.
- Published online: 2024-01-15.