Opuscula Math. 44, no. 2 (2024), 197-240
https://doi.org/10.7494/OpMath.2024.44.2.197
Opuscula Mathematica
Parabolic turbulence k-epsilon model with applications in fluid flows through permeable media
Hermenegildo Borges de Oliveira
Abstract. In this work, we study a one-equation turbulence \(k\)-epsilon model that governs fluid flows through permeable media. The model problem under consideration here is derived from the incompressible Navier-Stokes equations by the application of a time-averaging operator used in the \(k\)-epsilon modeling and a volume-averaging operator that is characteristic of modeling unsteady porous media flows. For the associated initial- and boundary-value problem, we prove the existence of suitable weak solutions (average velocity field and turbulent kinetic energy) in the space dimensions of physics interest.
Keywords: turbulence, \(k\)-epsilon modelling, permeable media, existence.
Mathematics Subject Classification: 76F60, 76S05, 35Q35, 35K55, 35A01, 76D03.
- B.V. Antohe, J.L. Lage, A general two-equation macroscopic turbulence model for incompressible flow in porous media, Int. J. Heat Mass Transf. 13 (1997), 3013-3024. https://doi.org/10.1016/S0017-9310(96)00370-5
- S.N. Antontsev, J.I. Díaz, H.B. de Oliveira, On the confinement of a viscous fluid by means of a feedback external field, C. R. Méc. Acad. Sci. Paris 330 (2002), no. 12, 797-802. https://doi.org/10.1016/S1631-0721(02)01536-X
- S.N. Antontsev, J.I. Díaz, H.B. de Oliveira, Stopping a viscous fluid by a feedback dissipative field: I. The stationary Stokes problem, J. Math. Fluid Mech. 6 (2004), no. 4, 439-461. https://doi.org/10.1007/s00021-004-0106-x
- S.N. Antontsev, J.I. Díaz, H.B. de Oliveira, Stopping a viscous fluid by a feedback dissipative field: II. The stationary Navier-Stokes problem, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 15 (2004), no. 3-4, 257-461. http://eudml.org/doc/252413
- S.N. Antontsev, H.B. de Oliveira, Finite time localized solutions of fluid problems with anisotropic dissipation, [in:] I.N. Figueiredo, J.F. Rodrigues, L. Santos (eds), Free Boundary Problems, International Series of Numerical Mathematics, vol. 154, Birkhäuser, Basel, 2006. https://doi.org/10.1007/978-3-7643-7719-9_3
- E. Aulisa, L. Bloshanskaya, L. Hoang, A. Ibragimov, Analysis of generalized Forchheimer flows of compressible fluids in porous media, J. Math. Phys. 50 (2009), 103102. https://doi.org/10.1063/1.3204977
- P. Baras, M. Pierre, Problèmes paraboliques semi-linéaires avec données mesures, Applicable Anal. 18 (1984), no. 1-2, 111-149. https://doi.org/10.1080/00036818408839514
- L. Boccardo, T. Gallouët, Strongly nonlinear elliptic equations having natural growth terms and \(L^1\) data, Nonlinear Anal. 19 (1992), no. 6, 573-579. https://doi.org/10.1016/0362-546X(92)90022-7
- M. Bulíček, E. Feireisl, J. Málek, A Navier-Stokes-Fourier system for incompressible fluids with temperature dependent material coefficients, Nonlinear Anal. Real World Appl. 10 (2009), no. 2, 992-1015. https://doi.org/10.1016/j.nonrwa.2007.11.018
- M. Bulíček, R. Lewandowski, J. Málek, On evolutionary Navier-Stokes-Fourier type systems in three spatial dimensions, Comment. Math. Univ. Carolin. 52 (2011), no. 1, 89-114. http://eudml.org/doc/246630
- L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), no. 6, 771-831. https://doi.org/10.1002/cpa.3160350604
- T. Chacón-Rebollo, R. Lewandowski, Mathematical and Numerical Foundations of Turbulence Models and Applications, Springer New York, 2014. https://doi.org/10.1007/978-1-4939-0455-6
- E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955. https://catalog.princeton.edu/catalog/993494213506421
- P. Dreyfuss, Results for a turbulent system with unbounded viscosities: Weak formulations, existence of solutions, boundedness and smoothness, Nonlinear Anal. 68 (2008), no. 6, 1462-1478. https://doi.org/10.1016/j.na.2006.12.040
- G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, Springer New York, 2011. https://doi.org/10.1007/978-0-387-09620-9
- T. Gallouët, J. Lederer, R. Lewandowski, F. Murat, L. Tartar, On a turbulent system with unbounded eddy viscosities, Nonlinear Anal. 52 (2003), no. 4, 1051-1068. https://doi.org/10.1016/S0362-546X(01)00890-2
- J. Lederer, R. Lewandowski, A RANS 3D model with unbounded eddy viscosities, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), no. 3, 413-441. https://doi.org/10.1016/j.anihpc.2006.03.011
- M.J.S. de Lemos, Turbulence in Porous Media, 2nd ed., Elsevier, Waltham, MA, 2012. https://doi.org/10.1016/B978-0-08-044491-8.X5000-0
- R. Lewandowski, The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier-Stokes equation with an eddy viscosity, Nonlinear Anal. 28 (1997), no. 2, 393-417. https://doi.org/10.1016/0362-546X(95)00149-P
- B. Mohammadi, O. Pironneau, Analysis of the \(k\)-epsilon Turbulence Model, Wiley-Masson, Paris, 1994.
- A. Nakayama, F. Kuwahara, A macroscopic turbulence model for flow in a porous medium, J. Fluid Eng. 121 (1999), no. 2, 427-433. https://doi.org/10.1115/1.2822227
- A. Mielke, J. Naumann, Global-in-time existence of weak solutions to Kolmogorov's two-equation model of turbulence, C. R. Math. Acad. Sci. Paris 353 (2015), no. 4, 321-326. https://doi.org/10.1016/j.crma.2015.02.003
- H.B. de Oliveira, A. Paiva, On a one equation turbulent model with feedbacks, [in:] S. Pinelas, Z. Došlá, O. Došlý, P. Kloeden (eds), Springer Proc. Math. Stat., vol. 164, Springer Cham, 2016, 51-61. https://doi.org/10.1007/978-3-319-32857-7_5
- H.B. de Oliveira, A. Paiva, Existence for a one-equation turbulent model with strong nonlinearities, J. Elliptic Parabol. Equ. 3 (2017), no. 1-2, 65-91. https://doi.org/10.1007/s41808-017-0005-y
- H.B. de Oliveira, A. Paiva, A stationary one-equation turbulent model with applications in porous media, J. Math. Fluid Mech. 20 (2018), no. 2, 263-287. https://doi.org/10.1007/s00021-017-0325-6
- H.B. de Oliveira, A note on the existence for a model of turbulent flows through porous media, [in:] S. Pinelas, T. Caraballo, P. Kloeden, J. Graef (eds), Springer Proc. Math. Stat. vol. 230, Springer Cham, 2018, 21-38. https://doi.org/10.1007/978-3-319-75647-9_3
- H.B. de Oliveira, A. Paiva, Partial regularity of the solutions to a turbulent problem in porous media, Proc. Amer. Math. Soc. 147 (2019), no. 9, 3961-3981. https://doi.org/10.1090/proc/14545
- M.H.J. Pedras, M.J.S. de Lemos, On the definition of turbulent kinetic energy for flow in porous media, Int. Commun. Heat Mass Transfer 27 (2000), no. 2, 211-220. https://doi.org/10.1016/S0735-1933(00)00102-0
- J.-M. Rakotoson, Quasilinear elliptic problems with measures as data, Differ. Integral Equ. 4 (1991), no. 3, 449-457. https://doi.org/10.57262/die/1372700421
- J. Simon, Compact sets in the space \(L^p(0,T;B)\), Ann. Mat. Pura Appl. 146 (1987), no. 4, 65-96. https://doi.org/10.1007/BF01762360
- R. Temam, Navier-Stokes Equations, 2nd ed., Elsevier North-Holland, New York, 1979.
- K. Vafai (ed.), Handbook of Porous Media, 2nd ed., CRC Press, Boca Raton, FL (2005). https://doi.org/10.1201/9780415876384
- B. Wood, X. He, S.V. Apte, Modeling turbulent flows in porous media, Annu. Rev. Fluid Mech. 52 (2020), no. 1, 171-203. https://doi.org/10.1146/annurev-fluid-010719-060317
- Hermenegildo Borges de Oliveira
https://orcid.org/0000-0001-9053-8442
- FCT - Universidade do Algarve, Faro, Portugal
- CMAFcIO - Universidade de Lisboa, Portugal
- Communicated by J.I. Díaz.
- Received: 2023-06-28.
- Revised: 2023-08-18.
- Accepted: 2023-08-23.
- Published online: 2024-01-15.