Opuscula Math. 43, no. 4 (2023), 493-505
https://doi.org/10.7494/OpMath.2023.43.4.493

 
Opuscula Mathematica

Generalized derivations and generalized exponential monomials on hypergroups

Żywilla Fechner
Eszter Gselmann
László Székelyhidi

Abstract. In one of our former papers "Endomorphisms of the measure algebra of commutative hypergroups" we considered exponential monomials on hypergroups and higher order derivations of the corresponding measure algebra. Continuing with this, we are now looking for the connection between the generalized exponential polynomials of a commutative hypergroup and the higher order derivations of the corresponding measure algebra.

Keywords: moment function, moment sequence, exponential monomial, exponential polynomial, derivation, higher order derivation, hypergroup.

Mathematics Subject Classification: 39B52, 39B72, 43A45, 43A70.

Full text (pdf)

  1. W.R. Bloom, H. Heyer, Harmonic analysis of probability measures on hypergroups, volume 20 of De Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin, 1995.
  2. Ż. Fechner, E. Gselmann, L. Székelyhidi, Endomorphisms of the measure algebra of commutative hypergroups (2022), arXiv:2204.07499.
  3. L. Székelyhidi, Functional Equations on Hypergroups, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013.
  4. L. Székelyhidi, Harmonic and Spectral Analysis, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014.
  5. K. Vati, L. Székelyhidi, Exponential monomials on hypergroup joins, Miskolc Math. Notes 21 (2020), no. 1, 463-472. https://doi.org/10.18514/MMN.2020.3011
  • Communicated by Marek Galewski.
  • Received: 2022-10-20.
  • Accepted: 2023-04-21.
  • Published online: 2023-06-13.
Opuscula Mathematica - cover

Cite this article as:
Żywilla Fechner, Eszter Gselmann, László Székelyhidi, Generalized derivations and generalized exponential monomials on hypergroups, Opuscula Math. 43, no. 4 (2023), 493-505, https://doi.org/10.7494/OpMath.2023.43.4.493

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.