Opuscula Math. 43, no. 2 (2023), 247-268
https://doi.org/10.7494/OpMath.2023.43.2.247

 
Opuscula Mathematica

Discrete spectrum of zero order pseudodifferential operators

Grigori Rozenblum

Abstract. We study the rate of convergence of eigenvalues to the endpoints of essential spectrum for zero order pseudodifferential operators on a compact manifold.

Keywords: pseudodifferential operators, eigenvalue asymptotics.

Mathematics Subject Classification: 47A75, 58J50.

Full text (pdf)

  1. M.R. Adams, Spectral properties of zeroth-order pseudodifferential operators, J. Functional Analysis 52 (1983), no. 3, 420-441. https://doi.org/10.1016/0022-1236(83)90078-2
  2. M. Agranovich, B. Amosov, M. Levitin, Spectral problems for the Lamé system with spectral parameter in boundary conditions on smooth or nonsmooth boundary, Russ. J. Math. Phys. 6 (1999), no. 3, 247-281.
  3. K. Ando, H. Kang, Y. Miyanishi, Elastic Neumann-Poincaré operators in three dimensional smooth domains: polynomial compactness and spectral structure, Int. Math. Res. Not. IMRN 2019 no. 12, 3883-3900. https://doi.org/10.1093/imrn/rnx258
  4. K. Ando, H. Kang, Y. Miyanishi, Convergence rate for eigenvalues of the elastic Neumann-Poincaré operator in two dimensions, J. Math. Pures Appl. 140 (2020), 211-229. https://doi.org/10.1016/j.matpur.2020.06.008
  5. J. Barbe, Asymptotics of eigenvalues for hypoelliptic Hamiltonians without homogeneity assumptions, Math. Nachr. 224 (2001), 17-48. https://doi.org/10.1002/1522-2616(200104)224:1<17::AID-MANA17>3.0.CO;2-N
  6. M. Birman, M. Solomyak, Asymptotic behavior of the spectrum of pseudodifferential operators with anisotropically homogeneous symbols, Vestnik Leningrad. Univ. 1977, no. 13, Mat. Meh. Astronom. vyp. 3, 13-21 [in Russian]; English translation in: Vestnik Leningr. Univ. Math. 10 (1982), 237-247.
  7. M. Birman, M. Solomyak, Estimates for the singular numbers of integral operators, Uspehi Mat. Nauk 32 (1977), no. 1 (193), 17-84 [in Russian]; English translation in: Russ. Math. Surveys 32 (1977), 15-89.
  8. F.H. Brownell, C.W. Clark, Asymptotic distribution of eigenvalues of the lower part of the Schrödinger operator spectrum, J. of Math. Mech. 10 (1961), 31-70.
  9. M. Capoferri, Diagonalization of elliptic systems via pseudodifferential projections, J. Differential Equations 313 (2022), 157-187.
  10. M. Capoferri, D. Vassiliev, Invariant subspaces of elliptic systems I: pseudodifferential projections, J. Funct. Anal. 282 (2022), no. 8, Paper no. 109402, 43 pp.
  11. M. Capoferri, G. Rozenblum, N. Saveliev, D. Vassiliev, Topological obstructions to the diagonalization of elliptic systems, Proc. Amer. Math. Soc. Ser. B 9 (2022), 472-486.
  12. Y. Colin de Verdière, Spectral theory of pseudodifferential operators of degree 0 and an application to forced linear waves, Anal. PDE 13 (2020), no. 5, 1521-1537. https://doi.org/10.2140/apde.2020.13.1521
  13. Y. Colin de Verdière, L. Saint-Raymont, Attractors for two dimensional waves with homogeneous Hamiltonians of degree 0, Comm. Pure Appl. Math. 73 (2020), no. 2, 421-462. https://doi.org/10.1002/cpa.21845
  14. S. Dyatlov, M. Zworski, Microlocal analysis of forced waves, Pure Appl. Anal. 1 (2019), no. 3, 359-384. https://doi.org/10.2140/paa.2019.1.359
  15. J. Galkowski, M. Zworski, Viscosity limits for 0th order pseudodifferential operators, Comm. Pure Appl. Math. 75 (2022), no. 8, 1798-1869.
  16. L. Hörmander, Analysis of Partial Differential Operators, vol. 3, Springer, 1985.
  17. V. Ivrii, Microlocal Analysis and Precise Spectral Asymptotics, Springer-Verlag, 1998.
  18. V. Ivrii, Microlocal Analysis, Sharp Spectral Asymptotics and Applications. II. Functional Methods and Eigenvalue Asymptotics, Springer, Cham, 2019.
  19. S. Levendorsky, The method of approximate spectral projection, Mathematics of the USSR-Izvestiya 27 (1986), no. 3, 451-502. https://doi.org/10.1070/IM1986v027n03ABEH001185
  20. S. Levendorsky, Asymptotic Distribution of Eigenvalues of Differential Operators, Kluwer, 1990.
  21. Y. Miyanishi, G. Rozenblum, Spectral properties of the Neumann-Poincarè operator in 3D elasticity, Int. Math. Res. Not. IMRN 2021, no. 11, 8715-8740. https://doi.org/10.1093/imrn/rnz341
  22. R. Ponge, Connes' integration and Weyl's laws, arXiv:2107.01242.
  23. G. Rozenblum, An asymptotics of the negative discrete spectrum of the Schrödinger operator, Mathematical Notes of the Academy of Sciences of the USSR 21 (1977), no. 3, 222-227. https://doi.org/10.1007/BF01106748
  24. G. Rozenblum, Eigenvalue asymptotics for polynomially compact pseudodifferential operators, Algebra i Analiz 33 (2021), no. 2, 215-232.
  25. G. Rozenblum, On eigenvalues of the Neumann-Poincarè operator in 3D elasticity, J. Pseudo-Differ. Oper. Appl., to appear.
  26. M. Shubin, Pseudodifferential Operators and Spectral Theory, 2nd ed., Springer-Verlag, Berlin, 2001.
  27. Z. Tao, 0-th order pseudo-differential operators on the circle, arXiv:1909.06316.
  28. H. Tamura, The asymptotic distribution of discrete eigenvalues for Schrödinger operators, J. Math. Soc. Japan 29 (1977), no. 2, 189-218. https://doi.org/10.2969/jmsj/02920189
  29. H. Tamura, Asymptotic formulas with sharp remainder estimates for bound states of Schrödinger operators. I, J. Analyse Math. 40 (1981), 166-182. https://doi.org/10.1007/BF02790161
  30. H. Tamura, Asymptotic formulas with sharp remainder estimates for bound states of Schrödinger operators. II, J. Analyse Math. 41 (1982), 85-108. https://doi.org/10.1007/BF02803395
  31. J. Wang, The scattering matrix for 0th order pseudodifferential operators, arXiv:1909.06484.
  • Grigori Rozenblum
  • Chalmers University of Technology, Sweden
  • Communicated by P.A. Cojuhari.
  • Received: 2022-12-05.
  • Accepted: 2022-12-19.
  • Published online: 2023-03-27.
Opuscula Mathematica - cover

Cite this article as:
Grigori Rozenblum, Discrete spectrum of zero order pseudodifferential operators, Opuscula Math. 43, no. 2 (2023), 247-268, https://doi.org/10.7494/OpMath.2023.43.2.247

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.