Opuscula Math. 43, no. 2 (2023), 221-246
https://doi.org/10.7494/OpMath.2023.43.2.221

 
Opuscula Mathematica

Existence and asymptotic behavior of nonoscillatory solutions of half-linear ordinary differential equations

Manabu Naito

Abstract. We consider the half-linear differential equation \[(|x'|^{\alpha}\mathrm{sgn}\,x')' + q(t)|x|^{\alpha}\mathrm{sgn}\,x = 0, \quad t \geq t_{0},\] under the condition \[\lim_{t\to\infty}t^{\alpha}\int_{t}^{\infty}q(s)ds = \frac{\alpha^{\alpha}}{(\alpha+1)^{\alpha+1}}.\] It is shown that if certain additional conditions are satisfied, then the above equation has a pair of nonoscillatory solutions with specific asymptotic behavior as \(t\to\infty\).

Keywords: asymptotic behavior, nonoscillatory solution, half-linear differential equation.

Mathematics Subject Classification: 34C11, 34C10.

Full text (pdf)

  1. O. Došlý, Half-linear Euler differential equation and its perturbations, Electron. J. Qual. Theory Differ. Equ. 2016, Paper no. 10, 14 pp. https://doi.org/10.14232/ejqtde.2016.8.10
  2. O. Došlý, P. Řehák, Half-Linear Differential Equations, North-Holland Mathematics Studies, vol. 202, Elsevier, Amsterdam, 2005.
  3. Á. Elbert, Studia Sci. Math. Hungar. Asymptotic behaviour of autonomous half-linear differential systems on the plane, 19 (1984), 447-464.
  4. Á. Elbert, A. Schneider, Perturbations of the half-linear Euler differential equation, Results Math. 37 (2000), 56-83. https://doi.org/10.1007/BF03322512
  5. J. Jaroš, T. Kusano, T. Tanigawa, Nonoscillation theory for second order half-linear differential equations in the framework of regular variation, Results Math. 43 (2003), 129-149. https://doi.org/10.1007/BF03322729
  6. J. Jaroš, T. Kusano, T. Tanigawa, Nonoscillatory half-linear differential equations and generalized Karamata functions, Nonlinear Anal. 64 (2006), 762-787. https://doi.org/10.1016/j.na.2005.05.045
  7. T. Kusano, J.V. Manojlović, Precise asymptotic behavior of regularly varying solutions of second order half-linear differential equations, Electron. J. Qual. Theory Differ. Equ. 2016, Paper no. 62, 24 pp. https://doi.org/10.14232/ejqtde.2016.1.62
  8. T. Kusano, J.V. Manojlović, Asymptotic behavior of solutions of half-linear differential equations and generalized Karamata functions, Georgian Math. J. 28 (2021), 611-636. https://doi.org/10.1515/gmj-2020-2070
  9. J.V. Manojlović, Asymptotic analysis of regularly varying solutions of second-order half-linear differential equations, Kyoto University, RIMS Kokyuroku 2080 (2018), 4-17.
  10. M. Naito, Asymptotic behavior of nonoscillatory solutions of half-linear ordinary differential equations, Arch. Math. (Basel) 116 (2021), 559-570. https://doi.org/10.1007/s00013-020-01573-x
  11. M. Naito, Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations, I, Opuscula Math. 41 (2021), 71-94. https://doi.org/10.7494/OpMath.2021.41.1.71
  12. M. Naito, Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations, II, Arch. Math. (Brno) 57 (2021), 41-60. https://doi.org/10.5817/AM2021-1-41
  13. P. Řehák, Asymptotic formulae for solutions of half-linear differential equations, Appl. Math. Comput. 292 (2017), 165-177. https://doi.org/10.1016/j.amc.2016.07.020
  14. P. Řehák, V. Taddei, Solutions of half-linear differential equations in the classes gamma and pi, Differential Integral Equations 29 (2016), 683-714. https://doi.org/10.57262/die/1462298681
  • Manabu Naito
  • Ehime University, Faculty of Science, Department of Mathematics, Matsuyama 790-8577, Japan
  • Communicated by Josef Diblík.
  • Received: 2022-12-15.
  • Revised: 2023-02-14.
  • Accepted: 2023-02-21.
  • Published online: 2023-03-27.
Opuscula Mathematica - cover

Cite this article as:
Manabu Naito, Existence and asymptotic behavior of nonoscillatory solutions of half-linear ordinary differential equations, Opuscula Math. 43, no. 2 (2023), 221-246, https://doi.org/10.7494/OpMath.2023.43.2.221

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.