Opuscula Math. 43, no. 2 (2023), 185-197
https://doi.org/10.7494/OpMath.2023.43.2.185

 
Opuscula Mathematica

Lower density operators. Φf versus Φd

Gertruda Ivanova
Elżbieta Wagner-Bojakowska
Władysław Wilczyński

Abstract. Using the new method of the construction of lower density operator introduced in the earlier paper of the first two authors, we study how much the new operator can be different from the classical one. The aim of this paper is to show that if \(f\) is a good adjusted measure-preserving bijection then the lower density operator generated by \(f\) can be really different from the classical density operator.

Keywords: lower density operator, measure-preserving bijection.

Mathematics Subject Classification: 54C60, 26E25, 28D05.

Full text (pdf)

  1. A.M. Bruckner, Differentiation of Real Functions, Lecture Notes in Mathematics, vol. 659, Springer-Verlag, Berlin, 1978.
  2. A. Denjoy, Leçons sur le Calcul des Coefficients d'une Série Trigonométrique. Tome I. La Différentiation Seconde Mixte et Son Application aux Séries Trigonométriques, Gauthier-Villars, Paris, 1941.
  3. C. Goffman, C. Neugebauer, T. Nishiura, Density topology and approximate continuity, Duke Math. J. 28 (1961), 497-505.
  4. C. Goffman, D. Waterman, Approximately continuous transformations, Proc. AMS 12 (1961), 116-121.
  5. G. Ivanova, E. Wagner-Bojakowska, On lower density operators, submitted.
  6. J. Lukeš, J. Malý, L. Zajiček, Fine Topology Methods in Real Analysis and Potential Theory, Lecture Notes in Mathematics, vol. 1189, Springer-Verlag, 1986.
  7. J.C. Oxtoby, Measure and Category, Springer-Verlag, New York, 1971.
  8. W. Wilczyński, Density topologies, [in:] E. Pap (ed.), Handbook of Measure Theory, vol. I and II, Amsterdam, North-Holland, 2002, 675-702.
  9. L. Zajíček, Porosity and \(\sigma\)-porosity, Real Anal. Exchange 13 (1987/88), 314-350.
  • Gertruda Ivanova (corresponding author)
  • ORCID iD https://orcid.org/0000-0002-1832-9491
  • Pomeranian University in Słupsk, Institute of Exact and Technical Sciences, Arciszewskiego 22d, 76-200 Słupsk, Poland
  • Communicated by Palle E.T. Jorgensen.
  • Received: 2022-12-29.
  • Revised: 2023-01-16.
  • Accepted: 2023-01-17.
  • Published online: 2023-03-27.
Opuscula Mathematica - cover

Cite this article as:
Gertruda Ivanova, Elżbieta Wagner-Bojakowska, Władysław Wilczyński, Lower density operators. Φf versus Φd, Opuscula Math. 43, no. 2 (2023), 185-197, https://doi.org/10.7494/OpMath.2023.43.2.185

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.