Opuscula Math. 43, no. 2 (2023), 145-172
https://doi.org/10.7494/OpMath.2023.43.2.145
Opuscula Mathematica
Square-root boundaries for Bessel processes and the hitting times of radial Ornstein-Uhlenbeck processes
Abstract. This article deals with the first hitting times of a Bessel process to a square-root boundary. We obtain the explicit form of the distribution function of the hitting time by means of zeros of the confluent hypergeometric function with respect to the first parameter. In deducing the distribution function, the time that a radial Ornstein-Uhlenbeck process reaches a certain point is very useful and plays an important role. We also give its distribution function in the case that the starting point is closer to the origin than the arrival site.
Keywords: Bessel process, confluent hypergeometric function, first hitting time, radial Ornstein-Uhlenbeck process, square-root boundary.
Mathematics Subject Classification: 60J60, 33C15, 44A10.
- A.N. Borodin, P. Salminen, Handbook of Brownian Motion, 2nd ed., Birkhäuser, 2002.
- H. Buchholz, The Confluent Hypergeometric Function, Springer, 1969.
- T. Byczkowski, T. Ryznar, Hitting distribution of geometric Brownian motion, Studia Math. 173 (2006), 19-38. https://doi.org/10.4064/sm173-1-2
- S. Chiba, Asymptotic expansions for hitting distributions of Bessel process, Master Thesis, Tohoku University (2017) [in Japanese].
- Z. Ciesielski, S.J. Taylor, First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path, Trans. Amer. Math. Soc. 103 (1962), 434-450. https://doi.org/10.1090/S0002-9947-1962-0143257-8
- D.M. Delong, Crossing probabilities for a square-root boundary for Bessel process, Comm. Statist. Theory Methods 10 (1981), 2197-2213. https://doi.org/10.1080/03610928108828182
- D.M. Delong, Erratum: "Crossing probabilities for a square-root boundary for Bessel process", Comm. Statist. Theory Methods 12 (1983), 1699.
- R.J. Elliot, J. van der Hoek, W.P. Malcolm, Pairs trading, Quantitative Finance 5 (2005), 271-276. https://doi.org/10.1080/14697680500149370
- N. Enriquez, C. Sabot, M. Yor, Renewal series and square-root boundaries for Bessel processes, Electron. Commun. Probab. 13 (2008), 649-652. https://doi.org/10.1214/ECP.v13-1436
- H. Geman, M. Yor, Bessel processes, Asian options, and perpetuities, Mathematical Finance 3 (1993), 349-375. https://doi.org/10.1111/j.1467-9965.1993.tb00092.x
- R.K. Getoor, M.J. Sharpe, Excursions of Brownian motion and Bessel processes, Z. Wahrsch. Verw. Gebiete 47 (1979), 83-106. https://doi.org/10.1007/BF00533253
- A. Göing-Jaeschke, M. Yor, A survey and some generalizations of Bessel processes, Bernoulli 9 (2003), 313-349. https://doi.org/10.3150/bj/1068128980
- Y. Hamana, The probability distribution of the first hitting times of radial Ornstein-Uhlenbeck processes, Studia Math. 251 (2020), 65-88. https://doi.org/10.4064/sm180410-27-12
- Y. Hamana, R. Kaikura, K. Shinozaki, Asymptotic expansions for the first hitting times of Bessel processes, Opuscula Math. 41 (2021), 509-537. https://doi.org/10.7494/OpMath.2021.41.4.509
- Y. Hamana, H. Matsumoto, The probability densities of the first hitting times of Bessel processes, J. Math-for-Industry 48 (2012), 91-95.
- Y. Hamana, H. Matsumoto, The probability distributions of the first hitting times of Bessel processes, Trans. Amer. Math. Soc. 365 (2013), 5237-5257. https://doi.org/10.1090/S0002-9947-2013-05799-6
- Y. Hamana, H. Matsumoto, Asymptotics of the probability distributions of the first hitting times of Bessel processes, Electron. Commun. Probab. 19 (2014), 1-5. https://doi.org/10.1214/ECP.v19-3215
- Y. Hamana, H. Matsumoto, Hitting times to spheres of Brownian motions with and without drifts, Proc. Amer. Math. Soc. 144 (2016), 5385-5396. https://doi.org/10.1090/proc/13136
- Y. Hamana, H. Matsumoto, Precise asymptotic formulae for the first hitting times of Bessel processes, Tokyo J. Math. 41 (2018), 603-615.
- Y. Hariya, Some asymptotic formulae for Bessel process, Markov Process. Related Fields 21 (2015), 293-316.
- P. Henrici, Applied and Computational Analysis, vol. 2, Wiley, 1991.
- K. Itô, H.P. McKean, Diffusion Processes and Their Sample Paths, Springer, 1974.
- J.T. Kent, Eigenvalue expansion for diffusion hitting times, Z. Wahrsch. Verw. Gebiete 52 (1980), 309-319. https://doi.org/10.1007/BF00538895
- J. Lamperti, Semi-stable Markov processes I, Z. Wahrsch. Verw. Gebiete 22 (1972), 205-225. https://doi.org/10.1007/BF00536091
- W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd ed., Springer, 1966.
- D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, 3rd ed., Springer, 1999.
- P. Salminen, On the first hitting time and the last exit time for a Brownian motion to/from a moving boundary, Adv. Appl. Probab. 20 (1988), 411-426. https://doi.org/10.2307/1427397
- T. Takemura, M. Tomisaki, Lévy measure density corresponding to inverse local t , Publ. RIMS Kyoto Univ. 49 (2013), 563-599. https://doi.org/10.4171/PRIMS/113
- M. Yor, On square-root boundaries for Bessel processes, and pole-seeking Brownian motion, [in:] Stochastic Analysis and Applications (Swansea, 1983), Lecture Notes in Math. 1095, Springer, 1984, pp. 100-107.
- M. Yor, Exponential Functionals of Brownian Motion and Related Processes, Springer, 2001.
- Yuji Hamana
https://orcid.org/0000-0002-9997-3114
- University of Tsukuba, Department of Mathematics, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
- Communicated by Palle E.T. Jorgensen.
- Received: 2022-10-07.
- Accepted: 2022-12-21.
- Published online: 2023-03-27.