Opuscula Math. 42, no. 6 (2022), 833-847
https://doi.org/10.7494/OpMath.2022.42.6.833

 
Opuscula Mathematica

Stochastic model of drug concentration level during IV-administration

Irada Dzhalladova
Miroslava Růžičková

Abstract. A stochastic model describing the concentration of the drug in the body during its IV-administration is discussed. The paper compares a deterministic model created with certain simplifications with the stochastic model. Fluctuating and irregular patterns of plasma concentrations of some drugs observed during intravenous infusion are explained. An illustrative example is given with certain values of drug infusion rate and drug elimination rate.

Keywords: IV-administration, deterministic model, stochastic differential equation, mean value, delay differential equation.

Mathematics Subject Classification: 34F05, 60H10.

Full text (pdf)

  1. T.A. Ahmed, Basic Pharmacokinetic Concepts and Some Clinical Applications, Technology & Medicine, 2015.
  2. T. Buclin, M. Nicod, S. Kellenberger, Pharmacokinetic, UNIL, University of Lausanne, 2009.
  3. V. Claassen, Neglected Factors in Pharmacology and Neuroscience Research, Techniques in the Behavioral and Neural Sciences, vol. 12, Elsevier Science B.V., Amsterdam, 1994.
  4. J. Diblík, M. Růžičková, Asymptotic behavior of solutions and positive solutions of differential delayed equations, Funct. Differ. Equ. 14 (2007), no. 1, 83-105.
  5. J. Diblík, I. Dzhalladova, M. Michalková, M. Růžičková, Modeling of applied problems by stochastic systems and their analysis using the moment equations, Adv. Difference Equ. 2013 (2013), Article no. 152. https://doi.org/10.1186/1687-1847-2013-152
  6. J. Diblík, I. Dzhalladova, M. Michalková, M. Růžičková, Moment equations in modeling a stable foreign currency exchange market in conditions of uncertainty, Abstr. Appl. Anal. 2013 (2013), Art. ID 172847. https://doi.org/10.1155/2013/172847
  7. I. Dzhalladova, M. Růžičková, Dynamic system with random structure for modeling security and risk management in cyberspace, Opuscula Math. 39 (2019), no. 1, 23-37. https://doi.org/0.7494/OpMath.2019.39.1.23
  8. I. Dzhalladova, M. Růžičková, V. Štoudková Růžičková, Stability of the zero solution of nonlinear differential equations under the influence of white noise, Adv. Difference Equ. 2015 (2015), Article no. 143. https://doi.org/10.1186/s13662-015-0482-y
  9. I. Gyori, G. Ladas, Oscillation Theory of Delay Differential Equations, Clarendon Press, 1991.
  10. M.A. Khanday, A. Rafiq, K. Nazir, Mathematical models for drug diffusion through the compartments of blood and tissue medium, Alexandria Journal of Medicine 53 (2017), 245-249. https://doi.org/10.1016/j.ajme.2016.03.005
  11. M. Růžičková, J. Diblík, G. Vážanová, Mathematical Modeling of the IV-administered Drug Concentration Level, AIP Conference Proceedings 1978, 430011 (2018). https://doi.org/10.1063/1.5044026
  12. M. Růžičková, I. Dzhalladova, J. Laitochová, J. Diblík, Solution to a stochastic pursuit model using moment equations, Discrete Contin. Dyn. Syst. Ser. B 23 (2018), 473-485. https://doi.org/10.3934/dcdsb.2018032
  13. G. Scutt, D. Waxman, Improved estimates of mean pharmacokinetic parameters for increased accuracy in dosing and reduced risk to patients, British Journal of Clinical Pharmacology 87 (2021), no. 9, 3518-3530. https://doi.org/10.1111/bcp.14766
  • Miroslava Růžičková (corresponding author)
  • ORCID iD https://orcid.org/0000-0002-7724-763X
  • University of Białystok, Faculty of Mathematics, Department of Analysis, K. Ciołkowskiego 1M, 15-245 Białystok, Poland
  • Communicated by P.A. Cojuhari.
  • Received: 2022-08-29.
  • Revised: 2022-10-06.
  • Accepted: 2022-10-11.
  • Published online: 2022-11-24.
Opuscula Mathematica - cover

Cite this article as:
Irada Dzhalladova, Miroslava Růžičková, Stochastic model of drug concentration level during IV-administration, Opuscula Math. 42, no. 6 (2022), 833-847, https://doi.org/10.7494/OpMath.2022.42.6.833

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.