Opuscula Math. 41, no. 6 (2021), 881-898
https://doi.org/10.7494/OpMath.2021.41.6.881

 
Opuscula Mathematica

μ-Hankel operators on Hilbert spaces

Adolf Mirotin
Ekaterina Kuzmenkova

Abstract. A class of operators is introduced (\(\mu\)-Hankel operators, \(\mu\) is a complex parameter), which generalizes the class of Hankel operators. Criteria for boundedness, compactness, nuclearity, and finite dimensionality are obtained for operators of this class, and for the case \(|\mu| = 1\) their description in the Hardy space is given. Integral representations of \(\mu\)-Hankel operators on the unit disk and on the Semi-Axis are also considered.

Keywords: Hankel operator, \(\mu\)-Hankel operator, Hardy space, integral representation, nuclear operator, integral operator.

Mathematics Subject Classification: 47B25, 47B35.

Full text (pdf)

  1. N.I. Akhiezer, I.M. Glazman, Theory of Linear Operators in Hilbert Space, Dover Publications, Inc., New York, 1993.
  2. C. Berg, J.P.R. Christensen, P. Ressel, Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions, Springer-Verlag, New York, 1984.
  3. A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, vol. 1, 2, McGraw-Hill, New York, Toronto, London, 1953.
  4. I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space, AMS, Providence, Rhode Island, 1969.
  5. M.C. Ho, On the rotational invariance for the essential spectrum of \(\lambda\)-Toeplitz operators, J. Math. Anal. Appl. 413 (2014), 557-565.
  6. E. Jahnke, F. Emde, F. Lösch, Tables of Higher Functions, McGraw-Hill, New York, 1960.
  7. A.R. Mirotin, On the essential spectrum of \(\lambda\)-Toeplitz operators over compact Abelian groups, J. Math. Anal. Appl. 424 (2015), 1286-1295.
  8. A.R. Mirotin, Compact Hankel operators on compact abelian groups, Algebra and Analysis 33 (2021), 191-212 [in Russian].
  9. A.R. Mirotin, I.S. Kovalyova, The Markov-Stieltjes transform on Hardy and Lebesgue spaces, Integral Transforms Spec. Funct. 37 (2016), 995-1007, Corrigendum to our paper "The Markov-Stieltjes transform on Hardy and Lebesgue spaces" 28 (2017), 421-422.
  10. A.R. Mirotin, I.S. Kovalyova, The generalized Markov-Stieltjes operator on Hardy and Lebesgue spaces, Trudy Instituta Matematiki 25 (2017), 39-50 [in Russian].
  11. N.K. Nikolski, Operators, Functions, and Systems: an Easy Reading, vol. 1. Hardy, Hankel, and Toeplitz, Mathematical Surveys and Monographs, vol. 92, American Mathematical Society, 2002.
  12. N.K. Nikolski, Operators, Functions, and Systems: an Easy Reading, vol. 2: Model Operators and Systems, Mathematical Surveys and Monographs, vol. 93, American Mathematical Society, 2002.
  13. V.V. Peller, Hankel Operators and Their Applications, Springer-Verlag, New York, 2003.
  14. J. Weidmann, Linear Operators in Hilbert Spaces, Springer-Verlag, New York, 1980.
  15. D.R. Yafaev, Hankel and Toeplitz operators: continuous and discrete representations, Opuscula Math. 37 (2017), 189-218.
  • Adolf Mirotin (corresponding author)
  • ORCID iD https://orcid.org/0000-0001-7340-4522
  • F. Skorina Gomel State University, Department of Mathematics and Programming Technologies, 246019, Sovietskaya, 104, Gomel, Belarus
  • Regional Mathematical Center, Southern Federal University, Rostov-on-Don, 344090 Russia
  • Ekaterina Kuzmenkova
  • F. Skorina Gomel State University, Department of Mathematics and Programming Technologies, 246019, Sovietskaya, 104, Gomel, Belarus
  • Communicated by P.A. Cojuhari.
  • Received: 2021-06-23.
  • Accepted: 2021-08-09.
  • Published online: 2021-11-29.
Opuscula Mathematica - cover

Cite this article as:
Adolf Mirotin, Ekaterina Kuzmenkova, μ-Hankel operators on Hilbert spaces, Opuscula Math. 41, no. 6 (2021), 881-898, https://doi.org/10.7494/OpMath.2021.41.6.881

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.