Opuscula Math. 41, no. 6 (2021), 805-841
https://doi.org/10.7494/OpMath.2021.41.6.805
Opuscula Mathematica
The Krein-von Neumann extension of a regular even order quasi-differential operator
Minsung Cho
Seth Hoisington
Roger Nichols
Brian Udall
Abstract. We characterize by boundary conditions the Krein-von Neumann extension of a strictly positive minimal operator corresponding to a regular even order quasi-differential expression of Shin-Zettl type. The characterization is stated in terms of a specially chosen basis for the kernel of the maximal operator and employs a description of the Friedrichs extension due to Möller and Zettl.
Keywords: Krein-von Neumann extension, regular quasi-differential operator.
Mathematics Subject Classification: 47B25, 47E05, 34B24.
- N.I. Akhiezer, I.M. Glazman, Theory of Linear Operators in Hilbert Space, Volume II, Pitman, Boston, 1981.
- A.Yu. Anan'eva, V.S. Budyka On the spectral theory of the Bessel operator on a finite interval and the half-line, Diff. Eq. 52 (2016), 1517-1522.
- A.Yu. Ananieva, V.S. Budyika, To the spectral theory of the Bessel operator on finite interval and half-line , J. Math. Sci. 211 (2015), 624-645.
- Y. Arlinskii, E. Tsekanovskii, M. Krein's research on semi-bounded operators, its contemporary developments, and applications, [in:] Modern analysis and applications. The Mark Krein Centenary Conference. Vol. 1: Operator theory and related topics, V.M. Adamyan et al. (eds.), Oper. Theory Adv. Appl., Vol. 190, Birkhäuser Verlag, Basel, 2009, pp. 65-112.
- M.S. Ashbaugh, F. Gesztesy, M. Mitrea, R. Shterenberg, G. Teschl A survey on the Krein-von Neumann extension, the corresponding abstract buckling problem, and Weyl-type spectral asymptotics for perturbed Krein Laplacians in non smooth domains, [in:] Mathematical Physics, Spectral Theory and Stochastic Analysis, M. Demuth and W. Kirsch (eds.), Oper. Theory Adv. Appl., Vol. 232, Birkhäuser, Springer, Basel, 2013, pp. 1-106.
- S. Clark, F. Gesztesy, R. Nichols, M. Zinchenko, Boundary data maps and Krein's resolvent formula for Sturm-Liouville operators on a finite interval, Op. Mat. 8 (2014), 1-71.
- J. Eckhardt, F. Gesztesy, R. Nichols, G. Teschl, Weyl-Titchmarsh theory for Sturm-Liouville operators with distributional potentials, Opuscula Math. 33 (2013), 467-563.
- W.N. Everitt, L. Markus, Boundary Value Problems and Symplectic Algebra for Ordinary Differential and Quasi-Differential Operators, American Mathematical Society, Providence, RI, 1999.
- W.N. Everitt, A. Zettl, Generalized symmetric ordinary differential expressions I: the general theory, Nieuw Arch. Wisk. 27(1979), no. 3, 363-397.
- K. Friedrichs, Spektraltheoriehalbbeschränkter Operatoren und Anwendungaufdie Spektralzerlegung von Differentialoperatoren, Math. Ann. 109 (1934), 465-487 [in German].
- G. Fucci, F. Gesztesy, K. Kirsten, L.L. Littlejohn, R. Nichols, J. Stanfill, The Krein-von Neumann extension revisited, Appl. Anal. (2021), 25 p.
- F. Gesztesy, L. Littlejohn, R. Nichols, On self-adjoint boundary conditions for singular Sturm-Liouville operators bounded from below, J. Diff. Eq. 269 (2020), 6448-6491.
- A. Goriunov, V. Mikhailets, K. Pankrashkin, Formally self-adjoint quasi-differential operators and boundary value problems, Electron. J. Diff. Equ. 103 (2013), no. 101, 1-16.
- Y.I. Granovskyi, L.L. Oridoroga, Krein-von Neumann extension of an even order differential operator on a finite interval, Opuscula Math. 38 (2018), no. 5, 681-698.
- Y.I. Granovskyi, L.L. Oridoroga, Krein extension of an even-order differential operator, Differential Equations 54 (2018), no. 4, 551-556.
- T. Kato, Perturbation Theory for Linear Operators, corr. printing of the 2nd ed., Springer, Berlin, 1980.
- D.E. Knuth, The Art of Computer Programming. Vol. 1. Fundamental algorithms, Third edition, Addison-Wesley, Reading, MA, 1997.
- M.G. Krein, The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. I, Mat. Sbornik 20 (1947), 431-495 [in Russian].
- M.G. Krein, The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. II, Mat. Sbornik 21 365-404 [in Russian].
- A. Lunyov, Spectral functions of the simplest even order ordinary differential operator, Methods Funct. Anal. Topology 19 (2013), no. 4, 319-326.
- M. Marletta, A. Zettl, The Friedrichs extension of singular differential operators, J. Differential Equations 160 (2000), no. 2, 404-421.
- M. Möller, A. Zettl, Semi-boundedness of ordinary differential operators, J. Differential Equations 115 (1995), 24-49.
- M. Möller, A. Zettl, Symmetric differential operators and their Friedrichs extension, J. Differential Equations 115 (1995), 50-69.
- M.A. Naimark, Linear Partial Differential Operators, Part II: Linear Differential Operators in Hilbert Space, Transl. by E.R. Dawson, Engl. translation edited by W.N. Everitt, F. Ungar Publishing, New York, 1968.
- J. von Neumann Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren, Math. Ann. 102 (1930), 49-131 [in German].
- H.-D. Niessen, A. Zettl, The Friedrichs extension of regular ordinary differential operators, Proc. Roy. Soc.Edinburgh Sect. A 114 (1990), no. 3-4, 229-236.
- F.S. Rofe-Beketov, A.M. Kholkin, Spectral Analysis of Differential Operators: Interplay Between Spectral And Oscillatory Properties, Translated from the Russian by O. Milatovic and revised by the authors. With a foreword by V.A. Marchenko. World Scientific Monograph Series in Mathematics 7, World Scientific Publishing Company, Hackensack, 2005.
- K. Schmüdgen, Unbounded Self-Adjoint Operators on Hilbert Space, Graduate Texts in Mathematics, Springer, New York, 2012.
- D. Shin, On quasi-differential operators in Hilbert space, Doklad. Akad. Nauk. SSSR 18 (1938), 523-526.
- G. Teschl, Mathematical Methods in Quantum Mechanics. With Applications to Schrödinger Operators, 2nd ed., Graduate Studies in Math., Vol. 157, Amer. Math. Soc., RI, 2014.
- S. Yao, J. Sun, Jiong, A. Zettl, The Sturm-Liouville Friedrichs extension, Appl. Math. 60 (2015), no. 3, 299-320.
- A. Zettl, Formally self-adjoint quasi-differential operators, Rocky Mountain J. Math. 5 (1975), no.3, 453-474.
- A. Zettl, Sturm-Liouville Theory, Mathematical Surveys and Monographs, Vol. 121, Amer. Math. Soc., Providence, RI, 2005.
- Minsung Cho
https://orcid.org/0000-0003-3785-7107
- Carnegie Mellon University, Department of Mathematical Sciences, 5000 Forbes Avenue, Pittsburgh, PA 15289, USA
- Seth Hoisington
https://orcid.org/0000-0003-2318-2532
- University of Virginia, Department of Mathematics, Charlottesville, VA 22903, USA
- Roger Nichols (corresponding author)
https://orcid.org/0000-0001-6583-4637
- University of Tennessee at Chattanooga, Department of Mathematics (Dept. 6956), 615 McCallie Ave., Chattanooga, TN 37403, USA
- Brian Udall
https://orcid.org/0000-0003-2087-2730
- Rice University, Department of Mathematics, 6100 Main Street, Houston, TX 77005, USA
- Communicated by P.A. Cojuhari.
- Received: 2021-09-10.
- Revised: 2021-10-22.
- Accepted: 2021-11-05.
- Published online: 2021-11-29.