Opuscula Math. 41, no. 3 (2021), 335-379
https://doi.org/10.7494/OpMath.2021.41.3.335
Opuscula Mathematica
Multi-variable quaternionic spectral analysis
Ilwoo Cho
Palle E.T. Jorgensen
Abstract. In this paper, we consider finite dimensional vector spaces \(\mathbb{H}^n\) over the ring \(\mathbb{H}\) of all quaternions. In particular, we are interested in certain functions acting on \(\mathbb{H}^n\), and corresponding functional equations. Our main results show that (i) all quaternions of \(\mathbb{H}\) are classified by the spectra of their realizations under representation, (ii) all vectors of \(\mathbb{H}^n\) are classified by a canonical extended setting of (i), and (iii) the usual spectral analysis on the matricial ring \(M_n(\mathbb{C})\) of all \((n \times n)\)-matrices over the complex numbers \(\mathbb{C}\) has close connections with certain "non-linear" functional equations on \(\mathbb{H}^n\) up to the classification of (ii).
Keywords: the quaternions \(\mathbb{H}\), vector spaces \(\mathbb{H}^n\) over \(\mathbb{H}\), \(q\)-spectral forms, \(q\)-spectral functions.
Mathematics Subject Classification: 20G20, 46S10, 47S10.
- I. Cho, A spectral representation of the quaternions, preprint (2020).
- I. Cho, P.E.T. Jorgensen, Spectral analysis of equations over quaternions, preprint (2020).
- C.J.L. Doran, Geometric Algebra for Physicists, Cambridge Univ. Press, 2003.
- F.O. Farid, Q. Wang, F. Zhang, On the eigenvalues of quaternion matrices, Linear Multilinear Algebra 4 (2011), 451-473.
- C. Flaut, Eigenvalues and eigenvectors for the quaternion matrices of degree two, An. Stiint. Univ. Ovidius Constanta Ser. Mat. 10 (2002), no. 2, 39-44.
- P.R. Girard, Einstein’s equations and Clifford algebra, Adv. Appl. Clifford Alg. 9 (1999), no. 2, 225-230.
- P.R. Halmos, Hilbert Space Problem Book, Springer-Verlag, 1982.
- P.R. Halmos, Linear Algebra Problem Book, Math. Assoc. Amer., 1995.
- W.R. Hamilton, Lectures on Quaternions, Cambridge Univ. Press, 1853.
- I.L. Kantor, A.S. Solodnikov, Hypercomplex Numbers: An Elementary Introuction to Algebras, Springer-Verlag, 1989.
- V. Kravchenko, Applied Quaternionic Analysis, Heldemann Verlag, 2003.
- S.D. Leo, G. Scolarici, L. Solombrino, Quaternionic eigenvalue problem, J. Math. Phys. 43 (2002), 5815-5829.
- N. Mackey, Hamilton and Jacobi meet again: Quaternions and the eigenvalue problem, SIAM J. Matrix Anal. Appl. 16 (1995), no. 2, 421-435.
- S. Qaisar, L. Zou, Distribution for the standard eigenvalues of quaternion matrices, Internat. Math. Forum 7 (2012), no. 17, 831-838.
- L. Rodman, Topics in Quaternion Linear Algebra, Prinston Univ. Press, NJ, 2014.
- B.A. Rozenfeld, The History of non-Eucledean Geometry: Evolution of the Concept of a Geometric Spaces, Springer, 1988.
- A. Sudbery, Quaternionic Analysis, Math. Proc. Cambridge Philos. Soc. 85 (1998), no. 2, 199-224.
- L. Taosheng, Eigenvalues and eigenvectors of quaternion matrices, J. Central China Normal Univ. 29 (1995), no. 4, 407-411.
- J.A. Vince, Geometric Algebra for Computer Graphics, Springer, 2008.
- J. Voight, Quaternion Algebra, Dept. of Math., Dartmouth Univ., 2020.
- Ilwoo Cho (corresponding author)
- St. Ambrose University, Department of Mathematics and Statistics, 518 W. Locust St., Davenport, Iowa, 52803, USA
- Palle E.T. Jorgensen
https://orcid.org/0000-0003-2681-5753
- The University of Iowa, Department of Mathematics, 14C McLean Hall, Iowa City, IA 52246, USA
- Communicated by P.A. Cojuhari.
- Received: 2020-10-07.
- Revised: 2021-02-15.
- Accepted: 2021-02-26.
- Published online: 2021-04-19.