Opuscula Math. 41, no. 2 (2021), 259-268
https://doi.org/10.7494/OpMath.2021.41.2.259

 
Opuscula Mathematica

Remarks on the outer-independent double Italian domination number

Lutz Volkmann

Abstract. Let \(G\) be a graph with vertex set \(V(G)\). If \(u\in V(G)\), then \(N[u]\) is the closed neighborhood of \(u\). An outer-independent double Italian dominating function (OIDIDF) on a graph \(G\) is a function \(f:V(G)\longrightarrow \{0,1,2,3\}\) such that if \(f(v)\in\{0,1\}\) for a vertex \(v\in V(G)\), then \(\sum_{x\in N[v]}f(x)\ge 3\), and the set \(\{u\in V(G):f(u)=0\}\) is independent. The weight of an OIDIDF \(f\) is the sum \(\sum_{v\in V(G)}f(v)\). The outer-independent double Italian domination number \(\gamma_{oidI}(G)\) equals the minimum weight of an OIDIDF on \(G\). In this paper we present Nordhaus-Gaddum type bounds on the outer-independent double Italian domination number which improved corresponding results given in [F. Azvin, N. Jafari Rad, L. Volkmann, Bounds on the outer-independent double Italian domination number, Commun. Comb. Optim. 6 (2021), 123-136]. Furthermore, we determine the outer-independent double Italian domination number of some families of graphs.

Keywords: double Italian domination number, outer-independent double Italian domination number, Nordhaus-Gaddum bound.

Mathematics Subject Classification: 05C69.

Full text (pdf)

  1. F. Azvin, N. Jafari Rad, Bounds on the double Italian domination number of a graph, Discuss. Math. Graph Theory (to appear).
  2. F. Azvin, N. Jafari Rad, L. Volkmann, Bounds on the outer-independent double Italian domination number, Commun. Comb. Optim. 6 (2021), 123-136.
  3. M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, L. Volkmann, Roman domination in graphs, [in:] T.W. Haynes, S.T. Hedetniemi, M.A. Henning (eds.), Topics in Domination in Graphs, Springer, 2020, 365-409.
  4. M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, L. Volkmann, Varieties of Roman domination, [in:] T.W. Haynes, S.T. Hedetniemi, M.A. Henning (eds.), Structures of Domination in Graphs, Springer, 2020 (to appear).
  5. M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, L. Volkmann, Varieties of Roman domination II, AKCE Int. J. Graphs Comb. 17 (2020), 966-984.
  6. M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, L. Volkmann, A survey on Roman domination parameters in directed graphs, J. Combin. Math. Comb. Comput. (to appear).
  7. E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi, S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004), 11-22.
  8. T. Gallai, Über extreme Punkt- und Kantenmengen, Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 2 (1959), 133-138.
  9. T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
  10. D.A. Mojdeh, L. Volkmann, Roman \(\{3\}\)-domination (double Italian domination), Discrete Appl. Math. 283 (2020), 555-564.
  11. E.A. Nordhaus, J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956), 175-177.
  12. Z. Shao, D.A. Mojdeh, L. Volkmann, Total Roman \(\{3\}\)-domination, Symmetry (2020), 12(2), 268.
  • Lutz Volkmann
  • RWTH Aachen University, Lehrstuhl II für Mathematik, 52056 Aachen, Germany
  • Communicated by Dalibor Fronček.
  • Received: 2020-11-09.
  • Revised: 2021-01-31.
  • Accepted: 2021-02-09.
  • Published online: 2021-03-17.
Opuscula Mathematica - cover

Cite this article as:
Lutz Volkmann, Remarks on the outer-independent double Italian domination number, Opuscula Math. 41, no. 2 (2021), 259-268, https://doi.org/10.7494/OpMath.2021.41.2.259

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.