Opuscula Math. 41, no. 2 (2021), 259-268
https://doi.org/10.7494/OpMath.2021.41.2.259
Opuscula Mathematica
Remarks on the outer-independent double Italian domination number
Abstract. Let \(G\) be a graph with vertex set \(V(G)\). If \(u\in V(G)\), then \(N[u]\) is the closed neighborhood of \(u\). An outer-independent double Italian dominating function (OIDIDF) on a graph \(G\) is a function \(f:V(G)\longrightarrow \{0,1,2,3\}\) such that if \(f(v)\in\{0,1\}\) for a vertex \(v\in V(G)\), then \(\sum_{x\in N[v]}f(x)\ge 3\), and the set \(\{u\in V(G):f(u)=0\}\) is independent. The weight of an OIDIDF \(f\) is the sum \(\sum_{v\in V(G)}f(v)\). The outer-independent double Italian domination number \(\gamma_{oidI}(G)\) equals the minimum weight of an OIDIDF on \(G\). In this paper we present Nordhaus-Gaddum type bounds on the outer-independent double Italian domination number which improved corresponding results given in [F. Azvin, N. Jafari Rad, L. Volkmann, Bounds on the outer-independent double Italian domination number, Commun. Comb. Optim. 6 (2021), 123-136]. Furthermore, we determine the outer-independent double Italian domination number of some families of graphs.
Keywords: double Italian domination number, outer-independent double Italian domination number, Nordhaus-Gaddum bound.
Mathematics Subject Classification: 05C69.
- F. Azvin, N. Jafari Rad, Bounds on the double Italian domination number of a graph, Discuss. Math. Graph Theory (to appear).
- F. Azvin, N. Jafari Rad, L. Volkmann, Bounds on the outer-independent double Italian domination number, Commun. Comb. Optim. 6 (2021), 123-136.
- M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, L. Volkmann, Roman domination in graphs, [in:] T.W. Haynes, S.T. Hedetniemi, M.A. Henning (eds.), Topics in Domination in Graphs, Springer, 2020, 365-409.
- M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, L. Volkmann, Varieties of Roman domination, [in:] T.W. Haynes, S.T. Hedetniemi, M.A. Henning (eds.), Structures of Domination in Graphs, Springer, 2020 (to appear).
- M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, L. Volkmann, Varieties of Roman domination II, AKCE Int. J. Graphs Comb. 17 (2020), 966-984.
- M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, L. Volkmann, A survey on Roman domination parameters in directed graphs, J. Combin. Math. Comb. Comput. (to appear).
- E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi, S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004), 11-22.
- T. Gallai, Über extreme Punkt- und Kantenmengen, Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 2 (1959), 133-138.
- T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
- D.A. Mojdeh, L. Volkmann, Roman \(\{3\}\)-domination (double Italian domination), Discrete Appl. Math. 283 (2020), 555-564.
- E.A. Nordhaus, J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956), 175-177.
- Z. Shao, D.A. Mojdeh, L. Volkmann, Total Roman \(\{3\}\)-domination, Symmetry (2020), 12(2), 268.
- Lutz Volkmann
- RWTH Aachen University, Lehrstuhl II für Mathematik, 52056 Aachen, Germany
- Communicated by Dalibor Fronček.
- Received: 2020-11-09.
- Revised: 2021-01-31.
- Accepted: 2021-02-09.
- Published online: 2021-03-17.