Opuscula Math. 41, no. 2 (2021), 187-204
https://doi.org/10.7494/OpMath.2021.41.2.187
Opuscula Mathematica
Influence of an Lp-perturbation on Hardy-Sobolev inequality with singularity a curve
Idowu Esther Ijaodoro
El Hadji Abdoulaye Thiam
Abstract. We consider a bounded domain \(\Omega\) of \(\mathbb{R}^N\), \(N \geq 3\), \(h\) and \(b\) continuous functions on \(\Omega\). Let \(\Gamma\) be a closed curve contained in \(\Omega\). We study existence of positive solutions \(u \in H^1_0(\Omega)\) to the perturbed Hardy-Sobolev equation: \[-\Delta u+hu+bu^{1+\delta}=\rho^{-\sigma}_{\Gamma} u^{2^*_{\sigma}-1} \quad \textrm{ in } \Omega,\] where \(2^*_{\sigma}:=\frac{2(N-\sigma)}{N-2}\) is the critical Hardy-Sobolev exponent, \(\sigma\in [0,2)\), \(0\lt\delta\lt\frac{4}{N-2}\) and \(\rho_{\Gamma}\) is the distance function to \(\Gamma\). We show that the existence of minimizers does not depend on the local geometry of \(\Gamma\) nor on the potential \(h\). For \(N=3\), the existence of ground-state solution may depends on the trace of the regular part of the Green function of \(-\Delta+h\) and or on \(b\). This is due to the perturbative term of order \(1+\delta\).
Keywords: Hardy-Sobolev inequality, positive minimizers, parametrized curve, mass, Green function.
Mathematics Subject Classification: 35J91, 35J20, 35J75.
- T. Aubin, Problémes isopérimétriques de Sobolev, J. Differential Geom. 11 (1976), 573-598.
- M. Badiale, G. Tarantello, A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Arch. Rational Mech. Anal. 163 (2002), no. 4, 259-293.
- H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
- J.L. Chern, C.S. Lin, Minimizers of Caffarelli-Kohn-Nirenberg inequalities with the singularity on the boundary, Arch. Rational Mech. Anal. 197 (2010), no. 2, 401-432.
- A.V. Demyanov, A.I. Nazarov, On solvability of Dirichlet problem to semilinear Schrödinger equation with singular potential, Zapiski Nauchnykh Seminarov POMI. 336 (2006), 25-45.
- O. Druet, Elliptic equations with critical Sobolev exponents in dimension 3, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), no. 2, 125-142.
- I. Fabbri, G. Mancini, K. Sandeep, Classification of solutions of a critical Hardy Sobolev operator, J. Differential Equations 224 (2006), 258-276.
- M.M. Fall, I.A. Minlend, E.H.A. Thiam, The role of the mean curvature in a Hardy-Sobolev trace inequality, NoDEA Nonlinear Differential Equations Appl. 22 (2015), no. 5, 1047-1066.
- M.M. Fall, E.H.A. Thiam, Hardy-Sobolev inequality with singularity a curve, Topol. Methods Nonlinear Anal. 51 (2018), no. 1, 151-181.
- N. Ghoussoub, X.S. Kang, Hardy-Sobolev critical elliptic equations with boundary singularities, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), no. 6, 767-793.
- N. Ghoussoub, F. Robert, Sobolev inequalities for the Hardy-Schrödinger operator: extremals and critical dimensions, Bull. Math. Sci. 6 (2016), no. 1, 89-144.
- N. Ghoussoub, F. Robert, The effect of curvature on the best constant in the Hardy-Sobolev inequalities, Geom. Funct. Anal. 16 (2006), no. 6, 1201-1245.
- H. Jaber, Hardy-Sobolev equations on compact Riemannian manifolds , Nonlinear Anal. 103 (2014), 39-54.
- H. Jaber, Mountain pass solutions for perturbed Hardy-Sobolev equations on compact manifolds, Analysis 36 (2016), no. 4, 287–296.
- Y. Li, C. Lin, A Nonlinear Elliptic PDE with Two Sobolev-Hardy Critical Exponents, Springer-Verlag, 2011.
- E.H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. 118 (1983) 349-374.
- R. Musina, Existence of extremals for the Maziya and for the Caffarelli-Kohn-Nirenberg inequalities, Nonlinear Anal. 70 (2009), no. 8, 3002-3007.
- R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geometry 20 (1984), 479-495.
- G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353-372.
- E.H.A. Thiam, Weighted Hardy inequality on Riemannian manifolds, Commun. Contemp. Math. 18 (2016), no. 6, 1550072, 25 pp.
- E.H.A. Thiam, Hardy and Hardy-Sobolev inequalities on Riemannian manifolds, IMHOTEP J. Afr. Math. Pures Appl. 2 (2017), no. 1, 14-35.
- E.H.A. Thiam, Hardy-Sobolev inequality with higher dimensional singularity , Analysis 39 (2019), no. 3, 79-96.
- Idowu Esther Ijaodoro
https://orcid.org/0000-0002-9550-9090
- African Institute for Mathematical Sciences in Senegal, KM 2, Route de Joal, B.P. 14 18, Mbour, Senegal
- El Hadji Abdoulaye Thiam (corresponding author)
https://orcid.org/0000-0003-1206-8312
- Université de Thies, UFR des Sciences et Techniques, Département de Mathématiques, Thies, Senegal
- Communicated by Patrizia Pucci.
- Received: 2020-07-15.
- Revised: 2021-02-15.
- Accepted: 2021-02-17.
- Published online: 2021-03-17.