Opuscula Math. 41, no. 2 (2021), 187-204
https://doi.org/10.7494/OpMath.2021.41.2.187

 
Opuscula Mathematica

Influence of an Lp-perturbation on Hardy-Sobolev inequality with singularity a curve

Idowu Esther Ijaodoro
El Hadji Abdoulaye Thiam

Abstract. We consider a bounded domain \(\Omega\) of \(\mathbb{R}^N\), \(N \geq 3\), \(h\) and \(b\) continuous functions on \(\Omega\). Let \(\Gamma\) be a closed curve contained in \(\Omega\). We study existence of positive solutions \(u \in H^1_0(\Omega)\) to the perturbed Hardy-Sobolev equation: \[-\Delta u+hu+bu^{1+\delta}=\rho^{-\sigma}_{\Gamma} u^{2^*_{\sigma}-1} \quad \textrm{ in } \Omega,\] where \(2^*_{\sigma}:=\frac{2(N-\sigma)}{N-2}\) is the critical Hardy-Sobolev exponent, \(\sigma\in [0,2)\), \(0\lt\delta\lt\frac{4}{N-2}\) and \(\rho_{\Gamma}\) is the distance function to \(\Gamma\). We show that the existence of minimizers does not depend on the local geometry of \(\Gamma\) nor on the potential \(h\). For \(N=3\), the existence of ground-state solution may depends on the trace of the regular part of the Green function of \(-\Delta+h\) and or on \(b\). This is due to the perturbative term of order \(1+\delta\).

Keywords: Hardy-Sobolev inequality, positive minimizers, parametrized curve, mass, Green function.

Mathematics Subject Classification: 35J91, 35J20, 35J75.

Full text (pdf)

  1. T. Aubin, Problémes isopérimétriques de Sobolev, J. Differential Geom. 11 (1976), 573-598.
  2. M. Badiale, G. Tarantello, A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Arch. Rational Mech. Anal. 163 (2002), no. 4, 259-293.
  3. H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
  4. J.L. Chern, C.S. Lin, Minimizers of Caffarelli-Kohn-Nirenberg inequalities with the singularity on the boundary, Arch. Rational Mech. Anal. 197 (2010), no. 2, 401-432.
  5. A.V. Demyanov, A.I. Nazarov, On solvability of Dirichlet problem to semilinear Schrödinger equation with singular potential, Zapiski Nauchnykh Seminarov POMI. 336 (2006), 25-45.
  6. O. Druet, Elliptic equations with critical Sobolev exponents in dimension 3, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), no. 2, 125-142.
  7. I. Fabbri, G. Mancini, K. Sandeep, Classification of solutions of a critical Hardy Sobolev operator, J. Differential Equations 224 (2006), 258-276.
  8. M.M. Fall, I.A. Minlend, E.H.A. Thiam, The role of the mean curvature in a Hardy-Sobolev trace inequality, NoDEA Nonlinear Differential Equations Appl. 22 (2015), no. 5, 1047-1066.
  9. M.M. Fall, E.H.A. Thiam, Hardy-Sobolev inequality with singularity a curve, Topol. Methods Nonlinear Anal. 51 (2018), no. 1, 151-181.
  10. N. Ghoussoub, X.S. Kang, Hardy-Sobolev critical elliptic equations with boundary singularities, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), no. 6, 767-793.
  11. N. Ghoussoub, F. Robert, Sobolev inequalities for the Hardy-Schrödinger operator: extremals and critical dimensions, Bull. Math. Sci. 6 (2016), no. 1, 89-144.
  12. N. Ghoussoub, F. Robert, The effect of curvature on the best constant in the Hardy-Sobolev inequalities, Geom. Funct. Anal. 16 (2006), no. 6, 1201-1245.
  13. H. Jaber, Hardy-Sobolev equations on compact Riemannian manifolds , Nonlinear Anal. 103 (2014), 39-54.
  14. H. Jaber, Mountain pass solutions for perturbed Hardy-Sobolev equations on compact manifolds, Analysis 36 (2016), no. 4, 287–296.
  15. Y. Li, C. Lin, A Nonlinear Elliptic PDE with Two Sobolev-Hardy Critical Exponents, Springer-Verlag, 2011.
  16. E.H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. 118 (1983) 349-374.
  17. R. Musina, Existence of extremals for the Maziya and for the Caffarelli-Kohn-Nirenberg inequalities, Nonlinear Anal. 70 (2009), no. 8, 3002-3007.
  18. R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geometry 20 (1984), 479-495.
  19. G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353-372.
  20. E.H.A. Thiam, Weighted Hardy inequality on Riemannian manifolds, Commun. Contemp. Math. 18 (2016), no. 6, 1550072, 25 pp.
  21. E.H.A. Thiam, Hardy and Hardy-Sobolev inequalities on Riemannian manifolds, IMHOTEP J. Afr. Math. Pures Appl. 2 (2017), no. 1, 14-35.
  22. E.H.A. Thiam, Hardy-Sobolev inequality with higher dimensional singularity , Analysis 39 (2019), no. 3, 79-96.
  • El Hadji Abdoulaye Thiam (corresponding author)
  • ORCID iD https://orcid.org/0000-0003-1206-8312
  • Université de Thies, UFR des Sciences et Techniques, Département de Mathématiques, Thies, Senegal
  • Communicated by Patrizia Pucci.
  • Received: 2020-07-15.
  • Revised: 2021-02-15.
  • Accepted: 2021-02-17.
  • Published online: 2021-03-17.
Opuscula Mathematica - cover

Cite this article as:
Idowu Esther Ijaodoro, El Hadji Abdoulaye Thiam, Influence of an Lp-perturbation on Hardy-Sobolev inequality with singularity a curve, Opuscula Math. 41, no. 2 (2021), 187-204, https://doi.org/10.7494/OpMath.2021.41.2.187

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.