Opuscula Math. 40, no. 5 (2020), 569-597
https://doi.org/10.7494/OpMath.2020.40.5.569
Opuscula Mathematica
On some extensions of the A-model
Abstract. The A-model for finite rank singular perturbations of class \(\mathfrak{H}_{-m-2}\setminus\mathfrak{H}_{-m-1}\), \(m \in \mathbb{N}\), is considered from the perspective of boundary relations. Assuming further that the Hilbert spaces \((\mathfrak{H}_n)_{n\in\mathbb{Z}}\) admit an orthogonal decomposition \(\mathfrak{H}^-_n \oplus \mathfrak{H}^+_n\), with the corresponding projections satisfying \(P^{\pm}_{n+1}\subseteq P^{\pm}_n\), nontrivial extensions in the A-model are constructed for the symmetric restrictions in the subspaces.
Keywords: finite rank higher order singular perturbation, cascade (A) model, peak model, Hilbert space, scale of Hilbert spaces, Pontryagin space, ordinary boundary triple, Krein \(Q\)-function, Weyl function, gamma field, symmetric operator, proper extension, resolvent.
Mathematics Subject Classification: 47A56, 47B25, 47B50, 35P05.
- S. Albeverio, S.-M. Fei, P. Kurasov, Many body problems with "spin"-related contact interactions, Rep. Math. Phys. 47 (2001) 2, 157-166.
- S. Albeverio, P. Kurasov, Singular Perturbations of Differential Operators, London Mathematical Society Lecture Note Series 271, Cambridge University Press, UK, 2000.
- Y. Arlinskii, S. Belyi, V. Derkach, E. Tsekanovskii, On realization of the Krein-Langer class \(N_{\kappa}\) of matrix-valued functions in Pontryagin spaces, Math. Nachr. 281 (2008) 10, 1380-1399.
- T. Azizov, I. Iokhvidov, Linear Operators in Spaces with an Indefinite Metric, John Wiley & Sons, Inc., 1989.
- J. Behrndt, V.A. Derkach, S. Hassi, H. de Snoo, A realization theorem for generalized Nevanlinna families, Operators and Matrices 5 (2011) 4, 679-706.
- J. Behrndt, S. Hassi, H. de Snoo, Functional models for Nevanlinna families, Opuscula Math. 28 (2008) 3, 233-245.
- J. Behrndt, A. Luger, C. Trunk, On the negative squares of a class of self-adjoint extensions in Krein spaces, Math. Nachr. 286 (2013) 2-3, 118-148.
- V. Derkach, On Weyl function and generalized resolvents of a Hermitian operator in a Krein space, Integr. Equ. Oper. Theory 23 (1995) 4, 387-415.
- V. Derkach, Boundary triplets, Weyl functions, and the Krein formula, volume 1-2 of Operator Theory, Springer, Basel, 2015, Chapter 10, 183-218.
- V.A. Derkach, S. Hassi, A reproducing kernel space model for \(N_{\kappa}\)-functions, Proc. Amer. Math. Soc. 131 (2003) 12, 3795-3806.
- V. Derkach, S. Hassi, M. Malamud, Generalized boundary triples, I. Some classes of isometric and unitary boundary pairs and realization problems for subclasses of Nevanlinna functions, Math. Nachr. 293 (2020) 7, 1278-1327.
- V. Derkach, S. Hassi, M. Malamud, H. de Snoo, Boundary relations and their Weyl families, Trans. Amer. Math. Soc. 358 (2006) 12, 5351-5400.
- V. Derkach, S. Hassi, M. Malamud, H. de Snoo, Boundary relations and generalized resolvents of symmetric operators, Russ. J. Math. Phys. 16 (2009) 1, 17-60.
- V. Derkach, S. Hassi, M. Malamud, H. de Snoo, Boundary triplets and Weyl functions. Recent developments, [in:] S. Hassi, H.S.V. de Snoo, F.H. Szafraniec (eds), Operator Methods for Boundary Value Problems, London Math. Soc. Lecture Note Series, vol. 404, Cambridge University Press, UK, 2012, Chapter 7, 161-220.
- A. Dijksma, P. Kurasov, Yu. Shondin, High order singular rank one perturbations of a positive operator, Integr. Equ. Oper. Theory 53 (2005), 209-245.
- A. Dijksma, H. Langer, Y. Shondin, Rank one perturbations at infinite coupling in Pontryagin spaces, J. Func. Anal. 209 (2004) 1, 206-246.
- A. Dijksma, Y. Shondin, Singular point-like perturbations of the Bessel operator in a Pontryagin space, J. Diff. Equ. 164 (2000) 1, 49-91.
- S. Hassi, H.S.V. de Snoo, F.H. Szafraniec, Componentwise and Cartesian decompositions of linear relations, Dissertationes Math. 465 (2009), 1-59.
- S. Hassi, H.S.V. de Snoo, F.H. Szafraniec, Infinite-dimensional perturbations, maximally nondensely defined symmetric operators, and some matrix representations, Indag. Math. 23 (2012) 4, 1087-1117.
- S. Hassi, S. Kuzhel, On symmetries in the theory of finite rank singular perturbations, J. Func. Anal. 256 (2009), 777-809.
- S. Hassi, M. Malamud, V. Mogilevskii, Unitary equivalence of proper extensions of a symmetric operator and the Weyl function, Integr. Equ. Oper. Theory 77 (2013) 4, 449-487.
- S. Hassi, Z. Sebestyén, H.S.V. de Snoo, F.H. Szafraniec, A canonical decomposition for linear operators and linear relations, Acta Math. Hungar. 115 (2007) 4, 281-307.
- R. Juršėnas, Computation of the unitary group for the Rashba spin-orbit coupled operator, with application to point-interactions, J. Phys. A: Math. Theor. 51 (2018) 1, 015 203.
- R. Juršėnas, The peak model for the triplet extensions and their transformations to the reference Hilbert space in the case of finite defect numbers, arXiv:1810.07 416, 2020.
- P. Kurasov, \(\mathcal{H}_{-n}\)-perturbations of self-adjoint operators and Krein's resolvent formula, Integr. Equ. Oper. Theory 45 (2003) 4, 437-460.
- P. Kurasov, Triplet extensions I: Semibounded operators in the scale of Hilbert spaces, Journal d'Analyse Mathematique 107 (2009) 1, 252-286.
- P. Kurasov, Yu.V. Pavlov, On field theory methods in singular perturbation theory, Lett. Math. Phys. 64 (2003) 2, 171-184.
- K. Schmüdgen, Unbounded Self-adjoint Operators on Hilbert Space, Springer, Dordrecht, Heidelberg, New York, London, 2012.
- Rytis Juršėnas
https://orcid.org/0000-0003-0788-5123
- Vilnius University, Institute of Theoretical Physics and Astronomy, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
- Communicated by Aurelian Gheondea.
- Received: 2019-09-24.
- Revised: 2020-05-12.
- Accepted: 2020-07-30.
- Published online: 2020-10-10.