Opuscula Math. 40, no. 3 (2020), 313-322
https://doi.org/10.7494/OpMath.2020.40.3.313
Opuscula Mathematica
A unique weak solution for a kind of coupled system of fractional Schrödinger equations
Fatemeh Abdolrazaghi
Abdolrahman Razani
Abstract. In this paper, we prove the existence of a unique weak solution for a class of fractional systems of Schrödinger equations by using the Minty-Browder theorem in the Cartesian space. To this aim, we need to impose some growth conditions to control the source functions with respect to dependent variables.
Keywords: fractional Laplacian, uniqueness, weak solution, nonlinear systems.
Mathematics Subject Classification: 34A08, 35J10, 35D30, 93C15.
- F. Abdolrazaghi, A. Razani, On the weak solutions of an overdetermined system of nonlinear fractional partial integro-differential equations, Miskolc Math. Notes 20 (2019), 3-16.
- G. Autuori, P. Pucci, Elliptic problems involving the fractional Laplacian in \(\mathbb{R}^N\), J. Differential Equations 255 (2013), 2340-2362.
- B. Barrios, E. Colorado, A. De Pablo, U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations 252 (2012), 6133-6162.
- H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer Science & Business Media, 2010.
- L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), 1245-1260.
- X. Chang, Ground state solutions of asymptotically linear fractional Schrödinger equations, J. Math. Phys. 54 (2013), 061504.
- X. Chang, Z. Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity 26 (2013), 479-494.
- K. Diethelm, The Analysis of Fractional Differential Equations: An application-oriented exposition using differential operators of Caputo type, Springer Science & Business Media, 2010.
- S. Dipierro, G. Palatucci, E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, arXiv:1202.0576, (2012).
- P. Felmer, A. Quaas, J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), 1237-1262.
- A. Fiscella, P. Pucci, S. Saldi, Existence of entire solutions for Schrödinger-Hardy systems involving two fractional operators, Nonlinear Anal. 158 (2017), 109-131.
- A. Fiscella, P. Pucci, B. Zhang, \(p\)-fractional Hardy-Schrödinger-Kirchhoff systems with critical nonlinearities, Adv. Nonlinear Anal. 8 (2019) 1, 1111-1131.
- Y. Fu, H. Li, P. Pucci, Existence of nonnegative solutions for a class of systems involving fractional \((p,q)\)-Laplacian operators, Chin. Ann. Math. Ser. B 39 (2018), 357-372.
- A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, 2006.
- N. Nyamoradi, A. Razani, Existence of solutions for a new \(p\)-Laplacian fractional boundary value problem with impulsive effects, Journal of New Researches in Mathematics 5 (2019), 117-128.
- I. Podlubny, The Laplace transform method for linear differential equations of the fractional order, arXiv:funct-an/9710005, (1997).
- I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, vol. 198, Academic Press, San Diego, California, USA, 1999.
- A. Razani, Weak and strong detonation profiles for a qualitative model, J. Math. Anal. Appl. 276 (2002), 868-881.
- A. Razani, Weak Chapman-Jouguet detonation profile for a qualitative model, Bull. Aust. Math. Soc. 66 (2002), 393-403.
- A. Razani, Existence of Chapman-Jouguet detonation for a viscous combustion model, J. Math. Anal. Appl. 293 (2004), 551-563.
- A. Razani, Shock waves in gas dynamics, Surv. Math. Appl. 2 (2007), 59-89.
- A. Razani, Chapman-Jouguet travelling wave for a two-steps reaction scheme, Ital. J. Pure Appl. Math. 39 (2018), 544-553.
- A. Razani, Subsonic detonation waves in porous media, Phys. Scr. 94 (2019), no. 085209.
- S. Secchi, On fractional Schrödinger equations in \(R^N\) without the Ambrosetti-Rabinowitz condition, arXiv:1210.0755 (2012).
- R. Servadei, E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc. 367 (2015), 67-102.
- J. Tan, Y. Wang, J. Yang, Nonlinear fractional field equations, Nonlinear Anal. 75 (2012), 2098-2110.
- J. Xu, Z. Wei, W. Dong, Existence of weak solutions for a fractional Schrödinger equation, Commun. Nonlinear Sci. Numer. Simul. 22 (2015), 1215-1222.
- Q. Yang, F. Liu, I. Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model. 34 (2010), 200-218.
- Fatemeh Abdolrazaghi
https://orcid.org/0000-0002-3321-9450
- Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, P.O. Box 34149-16818, Qazvin, Iran
- Abdolrahman Razani (corresponding author)
https://orcid.org/0000-0002-3092-3530
- Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, P.O. Box 34149-16818, Qazvin, Iran
- Communicated by Patrizia Pucci.
- Received: 2020-01-10.
- Revised: 2020-02-11.
- Accepted: 2020-02-12.
- Published online: 2020-04-04.