Opuscula Math. 40, no. 2 (2020), 291-305
https://doi.org/10.7494/OpMath.2020.40.2.291

 
Opuscula Mathematica

Oscillation of time fractional vector diffusion-wave equation with fractional damping

R. Ramesh
S. Harikrishnan
J. J. Nieto
P. Prakash

Abstract. In this paper, sufficient conditions for \(H\)-oscillation of solutions of a time fractional vector diffusion-wave equation with forced and fractional damping terms subject to the Neumann boundary condition are established by employing certain fractional differential inequality, where \(H\) is a unit vector in \(\mathbb{R}^n\). The examples are given to illustrate the main results.

Keywords: fractional diffusion-wave equation, \(H\)-oscillation, vector differential equation.

Mathematics Subject Classification: 35B05, 35R11, 34K37.

Full text (pdf)

  1. D.-X. Chen, Oscillation criteria of fractional differential equations, Adv. Difference Equ. 33 (2012), 1-10.
  2. D.-X. Chen, Oscillatory behavior of a class of fractional differential equations with damping, U.P.B. Sci. Bull. Ser. A 75 (2013) 1, 107-117.
  3. Y.I. Domshlak, On the oscillation of solutions of vector differential equations, Soviet Math. Dokl. 11 (1970), 839-841.
  4. L.H. Erbe, Q. Kong, B.G. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York, 1995.
  5. S. Harikrishnan, P. Prakash, J.J. Nieto, Forced oscillation of solutions of a nonlinear fractional partial differential equation, Appl. Math. Comput. 254 (2015), 14-19.
  6. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.
  7. W.N. Li, Forced oscillation criteria for a class of fractional partial differential equations with damping term, Math. Probl. Eng. 2015 (2015), Article ID 410904.
  8. W.N. Li, On the forced oscillation of certain fractional partial differential equations, Appl. Math. Lett. 50 (2015), 5-9.
  9. W.N. Li, M. Han, F.W. Meng, \(H\)-oscillation of solutions of certain vector hyperbolic differential equations with deviating arguments, Appl. Math. Comput. 158 (2004), 637-653.
  10. W.N. Li, W. Sheng, Oscillation properties for solutions of a kind of partial fractional differential equations with damping term, J. Nonlinear Sci. Appl. 9 (2016), 1600-1608.
  11. E. Minchev, N. Yoshida, Oscillation of solutions of vector differential equations of parabolic type with functional arguments, J. Comput. Appl. Math. 151 (2003), 107-117.
  12. E.S. Noussair, C.A. Swanson, Oscillation theorems for vector differential equations, Util. Math. 1 (1972), 97-109.
  13. E.S. Noussair, C.A. Swanson, Oscillation of nonlinear vector differential equations, Ann. Mat. Pura. Appl. 109 (1976), 305-315.
  14. P. Prakash, S. Harikrishnan, Oscillation of solutions of impulsive vector hyperbolic differential equations with delays, Appl. Anal. 91 (2012), 459-473.
  15. P. Prakash, S. Harikrishnan, M. Benchohra, Oscillation of certain nonlinear fractional partial differential equation with damping term, Appl. Math. Letters 43 (2015), 72-79.
  16. P. Prakash, S. Harikrishnan, J.J. Nieto, J.-H. Kim, Oscillation of a time fractional partial differential equation, Elec. J. Qual. Theory Diff. Eqns. 15 (2014), 1-10.
  17. A. Raheem, Md. Maqbul, Oscillation criteria for impulsive partial fractional differential equations, Comput. Math. Appl. 73 (2017), 1781-1788.
  • J. J. Nieto
  • ORCID iD https://orcid.org/0000-0001-8202-6578
  • Universidad de Santiago de Compostela, Facultad de Matemáticas, Departamento de Análisis Matematico, Santiago de Compostela, Spain
  • King Abdulaziz University, Department of Mathematics, Jeddah 21589, Saudi Arabia
  • Communicated by Dušan D. Repovš.
  • Received: 2019-07-26.
  • Revised: 2019-10-23.
  • Accepted: 2019-11-03.
  • Published online: 2020-03-09.
Opuscula Mathematica - cover

Cite this article as:
R. Ramesh, S. Harikrishnan, J. J. Nieto, P. Prakash, Oscillation of time fractional vector diffusion-wave equation with fractional damping, Opuscula Math. 40, no. 2 (2020), 291-305, https://doi.org/10.7494/OpMath.2020.40.2.291

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.