Opuscula Math. 40, no. 2 (2020), 171-207
https://doi.org/10.7494/OpMath.2020.40.2.171

 
Opuscula Mathematica

On the deformed Besov-Hankel spaces

Salem Ben Saïd
Mohamed Amine Boubatra
Mohamed Sifi

Abstract. In this paper we introduce function spaces denoted by \(BH_{\kappa,\beta}^{p,r}\) (\(0\lt\beta\lt 1\), \(1\leq p, r \leq +\infty\)) as subspaces of \(L^p\) that we call deformed Besov-Hankel spaces. We provide characterizations of these spaces in terms of Bochner-Riesz means in the case \(1\leq p\leq +\infty\) and in terms of partial Hankel integrals in the case \(1\lt p\lt +\infty\) associated to the deformed Hankel operator by a parameter \(\kappa\gt 0\). For \(p=r=+\infty\), we obtain an approximation result involving partial Hankel integrals.

Keywords: deformed Hankel kernel, Besov spaces, Bochner-Riesz means, partial Hankel integrals.

Mathematics Subject Classification: 44A15, 46E30.

Full text (pdf)

  1. B. Amri, A. Gasmi, M. Sifi, Linear and bilinear multiplier operators for the Dunkl transform, Mediterr. J. Math. 7 (2010), 503-521.
  2. S. Ben Saïd, A Product formula and convolution structure for a k-Hankel transform on \(\mathbb{R}\), J. Math. Anal. Appl. 463 (2018) 2, 1132-1146.
  3. J.J. Betancor, L. Rodríguez-Mesa, On the Besov-Hankel spaces, J. Math. Soc. Japan 50 (1998) 3, 781-788.
  4. J.J. Betancor, L. Rodríguez-Mesa, Lipschitz-Hankel spaces and partial Hankel integrals, Integral Transforms Spec. Funct. 7 (1998) 1-2, 1-12.
  5. J.J. Betancor, L. Rodríguez-Mesa, Lipschitz-Hankel spaces, partial Hankel integrals and Bochner-Riesz means, Arch. Math. 71 (1998) 2, 115-122.
  6. M. Boureanu, V.D. Rădulescu, Anisotropic Neumann problems in Sobolev spaces with variable exponent, Nonlinear Anal. 75 (2012), 4471-4482.
  7. A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, vol. 2, McGraw-Hill, New York, 1953.
  8. A. Gasmi, M. Sifi, F. Soltani, Herz-type Hardy spaces for the Dunkl operator on the real line, Fract. Calc. Appl. Anal. 9 (2006) 3, 287-306.
  9. D.V. Giang, F. Móricz, A new characterization of Besov spaces on the real line, J. Math. Anal. Appl. 189 (1995), 533-551.
  10. J. Gosselin, K. Stempak, A weak-type estimate for Fourier-Bessel multipliers, Proc. Amer. Math. Soc. 106 (1989) 3, 655-662.
  11. L. Kamoun, Besov-type spaces for the Dunkl operator on the real line, J. Comput. Appl. Math. 199 (2007), 56-67.
  12. L. Kamoun, S. Negzaoui, Lipschitz spaces associated with reflection group \(\mathbb{Z}^d_2\), Commun. Math. Anal. 7 (2009) 1, 21-36.
  13. M. Mihăilescu, V.D. Rădulescu, Neumann problems associated to nonhomogeneous differential operators in Orlicz-Sobolev spaces, Ann. Inst. Fourier 58 (2008), 2087-2111.
  14. S.M. Nikol'skii, Approximation of Functions of Several Variables and Imbedding Theorems, Die Grun. Der Math. Wiss. in Einze. Band 205, Springer, Berlin, Heidelberg, New York, 1975.
  15. V.D. Rădulescu, D.D. Repovs, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, CCR Press, Taylor and Francis Group, Boca Raton FL, 2015.
  16. P.G. Rooney, On the \(\mathcal{Y}_{\nu}\) and \(\mathcal{H}_{\nu}\) transformations, Canad. J. Math. 32 (1980) 5, 1021-1044.
  17. M. Rosler, Bessel-type signed hypergroups on \(\mathbb{R}\), Probability measures on groups and related structures, XI (Oberwolfach, 1994), 292-304, World Sci. Publ., River Edge, NJ, 1995.
  18. G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1966.
  • Mohamed Amine Boubatra
  • ORCID iD https://orcid.org/0000-0002-3595-7246
  • Université Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire d'Analyse Mathématique et Applications, LR11ES11, Campus Universitaire, 2092 El Manar I, Tunis, Tunisia
  • Mohamed Sifi (corresponding author)
  • ORCID iD https://orcid.org/0000-0003-0607-8303
  • Université Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire d'Analyse Mathématique et Applications, LR11ES11, Campus Universitaire, 2092 El Manar I, Tunis, Tunisia
  • Communicated by Vicentiu D. Radulescu.
  • Received: 2019-11-11.
  • Revised: 2020-01-29.
  • Accepted: 2020-01-30.
  • Published online: 2020-03-09.
Opuscula Mathematica - cover

Cite this article as:
Salem Ben Saïd, Mohamed Amine Boubatra, Mohamed Sifi, On the deformed Besov-Hankel spaces, Opuscula Math. 40, no. 2 (2020), 171-207, https://doi.org/10.7494/OpMath.2020.40.2.171

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.