Opuscula Math. 39, no. 6 (2019), 773-813
https://doi.org/10.7494/OpMath.2019.39.6.773
Opuscula Mathematica
Deformation of semicircular and circular laws via p-adic number fields and sampling of primes
Ilwoo Cho
Palle E. T. Jorgensen
Abstract. In this paper, we study semicircular elements and circular elements in a certain Banach \(*\)-probability space \((\mathfrak{LS},\tau ^{0})\) induced by analysis on the \(p\)-adic number fields \(\mathbb{Q}_{p}\) over primes \(p\). In particular, by truncating the set \(\mathcal{P}\) of all primes for given suitable real numbers \(t\lt s\) in \(\mathbb{R}\), two different types of truncated linear functionals \(\tau_{t_{1}\lt t_{2}}\), and \(\tau_{t_{1}\lt t_{2}}^{+}\) are constructed on the Banach \(*\)-algebra \(\mathfrak{LS}\). We show how original free distributional data (with respect to \(\tau ^{0}\)) are distorted by the truncations on \(\mathcal{P}\) (with respect to \(\tau_{t\lt s}\), and \(\tau_{t\lt s}^{+}\)). As application, distorted free distributions of the semicircular law, and those of the circular law are characterized up to truncation.
Keywords: free probability, primes, \(p\)-adic number fields, Banach \(*\)-probability spaces, semicircular elements, circular elements, truncated linear functionals.
Mathematics Subject Classification: 11R56, 46L54, 47L30, 47L55.
- D. Alpay, P.E.T. Jorgensen, D. Levanony, A class of Gaussian processes with fractional spectral measures, J. Funct. Anal. 261 (2011) 2, 507-541.
- M. de Boeck, A. Evseev, S. Lyle, and L. Speyer, On bases of some simple modules of symmetric groups and Hecke algebras, Transform. Groups 23 (2018) 3, 631-669.
- I. Cho, Free distributional data of arithmetic functions and corresponding generating functions, Complex Anal. Oper. Theory 8 (2014) 2, 537-570.
- I. Cho, Dynamical systems on arithmetic functions determined by primes, Banach J. Math. Anal. 9 (2015) 1, 173-215.
- I. Cho, On dynamical systems induced by \(p\)-adic number fields, Opuscula Math. 35 (2015) 4, 445-484.
- I. Cho, Free semicircular families in free product Banach \(*\)-algebras induced by \(p\)-adic number fields over primes \(p\), Complex Anal. Oper. Theory 11 (2017) 3, 507-565.
- I. Cho, Asymptotic semicircular laws induced by \(p\)-adic number fields \(\mathbb{Q}_p\) over primes, Complex Anal. Oper. Theory 13 (2019) 7, 3169-3206.
- I. Cho, T.L. Gillespie, Free probability on the Hecke algebra, Complex Anal. Oper. Theory 9 (2015) 7, 1491-1531.
- I. Cho, P.E.T. Jorgensen, Krein-Space Operators Induced by Dirichlet Characters, Commutative and Noncommutative Harmonic Analysis and Applications, Contemp. Math., vol. 603, Amer. Math. Soc., Providence, RI, 2013, 3-33.
- I. Cho, P.E.T. Jorgensen, Semicircular elements induced by p-adic number fields, Opuscula Math. 37 (2017) 5, 665-703.
- H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993.
- H. Davenport, Multiplicative Number Theory, 3rd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000.
- P. Deligne, Applications de la formule des traces aux sommes trigonometriques, Cohomologies étale, Lecture Notes in Math., vol. 569, Springer, Berlin, 1977, 168-232.
- G. Feldman, M. Myronyuk, On a characterization of idempotent distributions on discrete fields and on the field of \(p\)-adic numbers, J. Theoret. Probab. 30 (2017) 2, 608-623.
- T. Gillespie, Superposition of zeroes of automorphic \(L\)-functions and functoriality, PhD Thesis, University of Iowa, (2010).
- T. Gillespie, GuangHua Ji, Prime number theorems for Rankin-Selberg \(L\)-functions over number fields, Sci. China Math. 54 (2011) 1, 35-46.
- K. Girstmair, Dedekind sums in the p-adic number field, Int. J. Number Theory 14 (2018) 2, 527-533.
- P. Ingram, \(p\)-adic uniformization and the action of Galois on certain affine correspondences, Canad. Math. Bull. 61 (2018) 3, 531-542.
- H. Iwaniec, E. Kowalski, Analytic Number Theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004.
- C. Jantzen, Duality for classical \(p\)-adic groups: the half-integral case, Representation Theory 22 (2018), 160-201.
- T. Kemp, R. Speicher, Strong Haagerup inequalities for free \(\mathcal{R}\)-diagonal elements, J. Funct. Anal. 251 (2007) 1, 141-173.
- F. Larsen, Powers of R-diagonal elements, J. Operator Theory 47 (2002) 1, 197-212.
- N. Mariaule, The field of \(p\)-adic numbers with a predicate for the powers of an integer, J. Symb. Log. 82 (2017) 1, 166-182.
- A. Nica, D. Shlyakhtenko, R. Speicher, \(R\)-diagonal elements and freeness with amalgamation, Canad. J. Math. 53 (2001) 2, 355-381.
- F. Radulescu, Random matrices, amalgamated free products and subfactors of the von Neumann algebra of a free group, of noninteger index, Invent. Math. 115 (1994) 2, 347-389.
- M. Solleveld, Topological \(K\)-theory of affine Hecke algebras, Ann. K-Theory 3 (2018) 3, 395-460.
- R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Mem. Amer. Math. Soc. 132 (1998), no. 627.
- V.S. Vladimirov, I.V. Volovich, E.I. Zelenov, \(p\)-Adic Analysis and Mathematical Physics, Series on Soviet and East European Mathematics, vol. 1, World Scientific Publishing Co., Inc., River Edge, NJ, 1994.
- D. Voiculescu, K. Dykema, A. Nica, Free Random Variables. A Noncommutative Probability Approach to Free Products with Applications to Random Matrices, Operator Algebras and Harmonic Analysis on Free Groups, CRM Monograph Series, vol. 1, American Mathematical Society, Providence, RI, 1992.
- Ilwoo Cho
- Saint Ambrose University, Department of Mathematics and Statistics, 421 Ambrose Hall, 518 W. Locust St., Davenport, Iowa, 52803, USA
- Palle E. T. Jorgensen
https://orcid.org/0000-0003-2681-5753
- The University of Iowa, Department of Mathematics, Iowa City, IA 52242-1419, USA
- Communicated by Petru A. Cojuhari.
- Received: 2019-08-05.
- Accepted: 2019-08-20.
- Published online: 2019-11-22.