Opuscula Math. 38, no. 3 (2018), 307-326

Opuscula Mathematica

Backward stochastic variational inequalities driven by multidimensional fractional Brownian motion

Dariusz Borkowski
Katarzyna Jańczak-Borkowska

Abstract. We study the existence and uniqueness of the backward stochastic variational inequalities driven by \(m\)-dimensional fractional Brownian motion with Hurst parameters \(H_k\) (\(k=1,\ldots m\)) greater than \(1/2\). The stochastic integral used throughout the paper is the divergence type integral.

Keywords: backward stochastic differential equation, fractional Brownian motion, backward stochastic variational inequalities, subdifferential operator.

Mathematics Subject Classification: 60H05, 60H07, 60H22.

Full text (pdf)

  • Dariusz Borkowski
  • Nicolaus Copernicus University, Faculty of Mathematics and Computer Science, ul. Chopina 12/18, 87-100 Toruń, Poland
  • Katarzyna Jańczak-Borkowska
  • University of Science and Technology, Institute of Mathematics and Physics, al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
  • Communicated by Tomasz Zastawniak.
  • Received: 2017-03-07.
  • Revised: 2017-10-22.
  • Accepted: 2017-11-17.
  • Published online: 2018-03-19.
Opuscula Mathematica - cover

Cite this article as:
Dariusz Borkowski, Katarzyna Jańczak-Borkowska, Backward stochastic variational inequalities driven by multidimensional fractional Brownian motion, Opuscula Math. 38, no. 3 (2018), 307-326, https://doi.org/10.7494/OpMath.2018.38.3.307

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.