Opuscula Math. 38, no. 2 (2018), 261-283
https://doi.org/10.7494/OpMath.2018.38.2.261

 
Opuscula Mathematica

Stochastic differential equations for random matrices processes in the nonlinear framework

Sara Stihi
Hacène Boutabia
Selma Meradji

Abstract. In this paper, we investigate the processes of eigenvalues and eigenvectors of a symmetric matrix valued process \(X_{t}\), where \(X_{t}\) is the solution of a general SDE driven by a \(G\)-Brownian motion matrix. Stochastic differential equations of these processes are given. This extends results obtained by P. Graczyk and J. Malecki in [Multidimensional Yamada-Watanabe theorem and its applications to particle systems, J. Math. Phys. 54 (2013), 021503].

Keywords: \(G\)-Brownian motion matrix, \(G\)-stochastic differential equations, random matrices, eigenvalues, eigenvectors.

Mathematics Subject Classification: 60B20, 60H10, 60H05.

Full text (pdf)

  • Sara Stihi
  • LaPS Laboratory, Badji-Mokhtar University, PO BOX 12, Annaba 23000, Algeria
  • Hacène Boutabia
  • LaPS Laboratory, Badji-Mokhtar University, PO BOX 12, Annaba 23000, Algeria
  • Selma Meradji
  • LaPS Laboratory, Badji-Mokhtar University, PO BOX 12, Annaba 23000, Algeria
  • Communicated by Palle E.T. Jorgensen.
  • Received: 2017-05-03.
  • Revised: 2017-10-08.
  • Accepted: 2017-10-10.
  • Published online: 2017-12-29.
Opuscula Mathematica - cover

Cite this article as:
Sara Stihi, Hacène Boutabia, Selma Meradji, Stochastic differential equations for random matrices processes in the nonlinear framework, Opuscula Math. 38, no. 2 (2018), 261-283, https://doi.org/10.7494/OpMath.2018.38.2.261

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.