Opuscula Math. 38, no. 2 (2018), 201-252
https://doi.org/10.7494/OpMath.2018.38.2.201

 
Opuscula Mathematica

Flat structure and potential vector fields related with algebraic solutions to Painlevé VI equation

Mitsuo Kato
Toshiyuki Mano
Jiro Sekiguchi

Abstract. A potential vector field is a solution of an extended WDVV equation which is a generalization of a WDVV equation. It is expected that potential vector fields corresponding to algebraic solutions of Painlevé VI equation can be written by using polynomials or algebraic functions explicitly. The purpose of this paper is to construct potential vector fields corresponding to more than thirty non-equivalent algebraic solutions.

Keywords: flat structure, Painlevé VI equation, algebraic solution, potential vector field.

Mathematics Subject Classification: 34M56, 33E17, 35N10, 32S25.

Full text (pdf)

  1. F.V. Andreev, A.V. Kitaev, Transformations \(RS_4^2(3)\) of ranks \(\le 4\) and algebraic solutions of the sixth Painlevé equation, Comm. Math. Phys. 228 (2002), 151-176.
  2. P. Boalch, From Klein to Painlevé via Fourier, Laplace and Jimbo, Proc. Lond. Math. Soc. (3) 90 (2005), 167-208.
  3. P. Boalch, The fifty-two icosahedral solutions to Painlevé VI, J. Reine Angew. Math. 596 (2006), 183-214.
  4. P. Boalch, Some explicit solutions to the Riemann-Hilbert problem, IRMA Lect. Math. Theor. Phys. 9 (2007), 85-112.
  5. P. Boalch, Higher genus icosahedral Painlevé curves, Funkcial. Ekvac. 50 (2007), 19-32.
  6. B. Dubrovin, Geometry of 2D topological field theories, [in:] M. Francoviglia, S. Greco (eds.), Integrable systems and quantum groups, Lecture Notes in Math. 1620, Springer, Cham, 1996, 120-348.
  7. B. Dubrovin, M. Mazzocco, Monodromy of certain Painlevé VI transcendents and reflection groups, Invent. Math. 141 (2000), 55-147.
  8. C. Hertling, Frobenius Manifolds and Moduli Spaces for Singularities, Cambridge University Press, Cambridge, 2002.
  9. N.J. Hitchin, Poncelet polygons and the Painlevé equation, [in:] Geometry and Analysis, Tata Inst. Fundam. Res. Stud. Math. (1995), 151-185.
  10. N.J. Hitchin, Lectures on octahedron, Bull. Lond. Math. Soc. 35 (2003), 577-600.
  11. K. Iwasaki, On algebraic solutions to Painlevé VI, arXiv:0809.1482.
  12. M. Kato, T. Mano, J. Sekiguchi, Flat structures without potentials, Rev. Roumaine Math. Pures Appl. 60 (2015) 4, 481-505.
  13. M. Kato, T. Mano, J. Sekiguchi, Flat structure on the space of isomonodromic deformations, arXiv:1511.01608.
  14. M. Kato, T. Mano, J. Sekiguchi, Flat structures and algebraic solutions to Painlevé VI equation, [in:] G. Filipuk, Y. Haraoka, S. Michalik (eds.), Analytic, Algebraic and Geometric Aspects of Differential Equations, Trends Math., Birkhäuser/Springer, Cham, 2017, 383-398.
  15. A.V. Kitaev, Quadratic transformations for the sixth Painlevé equation, Lett. Math. Phys. 21 (1991), 105-111.
  16. A.V. Kitaev, Grothendieck's dessins d'enfants, their deformations and algebraic solutions of the sixth Painlevé and Gauss hypergeometric equations, Algebra i Analiz 17 (2005) 1, 224-273.
  17. A.V. Kitaev, Remarks towards a classification of \(RS_4^2(3)\)-transformations and algebraic solutions of the sixth Painlevé equation, Sémin. Congr. 14 (2006), 199-227.
  18. A.V. Kitaev, R. Vidūnas, Quadratic transformations of the sixth Painlevé equation with application to algebraic solutions, Math. Nachr. 280 (2007), 1834-1855.
  19. Y. Konishi, S. Minabe, Local quantum cohomology and mixed Frobenius structure, arXiv:1405.7476.
  20. O. Lisovyy, Y. Tykhyy, Algebraic solutions of the sixth Painlevé equation, J. Geom. Phys. 85 (2014), 124-163.
  21. Yu. Manin, F-manifolds with flat structure and Dubrovin's duality, Adv. Math. 198 (2005) 1, 5-26.
  22. M. Noumi, Y. Yamada, A new Lax pair for the sixth Painlevé equation associated with so(8), [in:] T. Kawai, K. Fujita (eds.), Microlocal Analysis and Complex Fourier Analysis, World Scientific, River Edge, 2002, 238-252.
  23. C. Sabbah, Isomonodromic Deformations and Frobenius Manifolds. An Introduction, Universitext, Springer-Verlag, London, 2007.
  24. K. Saito, On the uniformization of complements of discriminant loci, RIMS Kokyuroku, 287 (1977), 117-137.
  25. K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 27 (1980), 265-291.
  26. K. Saito, On a linear structure of the quotient variety by a finite reflexion group, Preprint RIMS-288 (1979), Publ. RIMS, Kyoto Univ. 29 (1993), 535-579.
  27. K. Saito, T. Yano, J. Sekiguchi, On a certain generator system of the ring of invariants of a finite reflection group, Comm. Algebra 8 (1980), 373-408.
  28. J. Sekiguchi, A classification of weighted homogeneous Saito free divisors, J. Math. Soc. Japan 61 (2009), 1071-1095.
  29. J. Sekiguchi, Holonomic systems of differential equations of rank two with singularities along Saito free divisors of simple type, [in:] Topics on Real and Complex Singularities, Proceedings of the 4th Japanese-Australian Workshop, 2014, 159-188.
  30. G.C. Shephard, A.J. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274-304.
  31. R. Vidūnas, A.V. Kitaev, Computations of \(RS\)-pullback transformations for algebraic Painlevé VI solutions, J. Math. Sci.(N.Y.) 213 (2016), 706-722.
  • Mitsuo Kato
  • University of the Ryukyus, Colledge of Educations, Department of Mathematics, Nishihara-cho, Okinawa 903-0213, Japan
  • Toshiyuki Mano
  • University of the Ryukyus, Faculty of Science, Department of Mathematical Sciences, Nishihara-cho, Okinawa 903-0213, Japan
  • Jiro Sekiguchi
  • Tokyo University of Agriculture and Technology, Faculty of Engineering, Department of Mathematics, Koganei, Tokyo 184-8588, Japan
  • Communicated by Yoshishige Haraoka.
  • Received: 2016-11-01.
  • Revised: 2017-10-25.
  • Accepted: 2017-11-08.
  • Published online: 2017-12-29.
Opuscula Mathematica - cover

Cite this article as:
Mitsuo Kato, Toshiyuki Mano, Jiro Sekiguchi, Flat structure and potential vector fields related with algebraic solutions to Painlevé VI equation, Opuscula Math. 38, no. 2 (2018), 201-252, https://doi.org/10.7494/OpMath.2018.38.2.201

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.