Opuscula Math. 38, no. 2 (2018), 187-199

Opuscula Mathematica

Existence results for Kirchhoff type systems with singular nonlinearity

A. Firouzjai
G. A. Afrouzi
S. Talebi

Abstract. Using the method of sub-super solutions, we study the existence of positive solutions for a class of singular nonlinear semipositone systems involving nonlocal operator.

Keywords: sub-supersolution, infinite semipositone systems, singular weights, Kirchhoff-type.

Mathematics Subject Classification: 35J55, 35J65.

Full text (pdf)

  1. G.A. Afrouzi, N.T. Chung, S. Shakeri, Existence of positive solutions for Kirchhoff type equations, Electron. J. Differential Equations 180 (2013), 1-8.
  2. G.A. Afrouzi, N.T. Chung, S. Shakeri, Existence of positive solutions for Kirchhoff type systems with singular weights, submitted.
  3. C. Atkinson, K. El Kalli, Some boundary value problems for the Bingham model, J. Non-Newtonian Fluid Mech. 41 (1992), 339-363.
  4. L. Caffarelli, R. Kohn, L. Nirenberg, First order interpolation inequalities with weights, Compos. Math. 53 (1984), 259-275.
  5. A. Canada, P. Drabek, J.L. Gamez, Existence of positive solutions for some problems with nonlinear diffusion, Trans. Amer. Math. Soc. 349 (1997), 4231-4249.
  6. N.T. Chung, An existence result for a class of Kirchhoff type systems via sub and supersolutions method, Appl. Math. Lett. 35 (2014), 95-101.
  7. F. Cirstea, D. Motreanu, V. Radulescu, Weak solutions of quasilinear problems with nonlinear boundary condition, Nonlinear Anal. 43 (2001), 623-636.
  8. P. Drabek, J. Hernandez, Existence and uniqueness of positive solutions for some quasilinear elliptic problem, Nonlinear Anal. 44 (2001), 189-204.
  9. P. Drabek, P. Krejci, P. Takac, Nonlinear Differential Equations, Chapman Hall/CRC Research Notes in Mathematics, vol. 404, Chapman Hall/CRC, Florida, 1999.
  10. J. Garcia-Melian, L. Iturriaga, Some counter examples related to the stationary Kirchhoff equations, Proc. Amer. Math. Soc. 144 (2016), 3405-3411.
  11. X. Han, G. Dai, On the sub-supersolution method for \(p(x)\)-Kirchhoff type equations, Journal of Inequalities and Applications 2012, (2012):283.
  12. G. Kirchhoff, Mechanik, Teubner, Leipzig, Germany, 1883.
  13. E.K. Lee, R. Shivaji, J. Ye, Positive solutions for infinite semipositione problems with falling zeros, Nonlinear Anal. 72 (2010), 4475-4479.
  14. O.H. Miyagaki, R.S. Rodrigues, On positive solutions for a class of singular quasilinear elliptic systems, J. Math. Anal. Appl. 334 (2007), 818-833.
  15. G. Molica Bisci, D. Repovs, Higher nonlocal problems with bounded primitive, J. Math. Anal. Appl. 420 (2014), 167-176.
  16. G. Molica Bisci, D. Repovs, Multiple solutions for elliptic equations involving a general operator in divergence form, Ann. Acad. Fenn. Math. 39 (2014), 259-273.
  17. G. Molica Bisci, D. Repovs, Existence and localization of solutions for nonlocal fractional equations, Asymptot. Anal. 9 (2014), 367-378.
  18. G. Molica Bisci, V. Radulescu, R. Servadei, Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications, vol. 162, Cambridge University Press, Cambridge, 2016.
  19. P. Pucci, B. Zhang, M. Xianq, Existence and multiplicity of entire solutions for fractional \(p\)-Kirchhoff equations, Advances in Nonlinear Analysis 5 (2016), 27-55.
  20. S.H. Rasouli, A population biological model with a singular nonlinearity, Appl. Math. 59 (2014) 3, 257-264.
  21. B. Xuan, The eigenvalue problem for a singular quasilinear elliptic equation, Electron. J. Differential Equations 16 (2004), 1-11.
  22. B. Xuan, The solvability of quasilinear Brezis-Nirenberg-type problems with singular weights, Nonlinear Anal. 62 (2005), 703-725.
  • A. Firouzjai
  • Pyame Noor University, Faculty of Basic Sciences, Department of Mathematics, Tehran, Iran
  • G. A. Afrouzi
  • Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
  • S. Talebi
  • Department of Mathematics, Faculty of Basic Sciences, Pyame Noor University, Mashhad, Iran
  • Communicated by Dušan Repovš.
  • Received: 2017-02-17.
  • Revised: 2017-07-16.
  • Accepted: 2017-08-22.
  • Published online: 2017-12-29.
Opuscula Mathematica - cover

Cite this article as:
A. Firouzjai, G. A. Afrouzi, S. Talebi, Existence results for Kirchhoff type systems with singular nonlinearity, Opuscula Math. 38, no. 2 (2018), 187-199, https://doi.org/10.7494/OpMath.2018.38.2.187

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.