Opuscula Math. 37, no. 6 (2017), 795-819
http://dx.doi.org/10.7494/OpMath.2017.37.6.795
Opuscula Mathematica
The second Cushing-Henson conjecture for the Beverton-Holt q-difference equation
Martin Bohner
Sabrina H. Streipert
Abstract. In this paper, we study the second Cushing-Henson conjecture for the Beverton-Holt difference equation with periodic inherent growth rate and periodic carrying capacity in the quantum calculus setting. We give a short summary of recent results regarding the Beverton-Holt difference and \(q\)-difference equation and introduce the theory of quantum calculus briefly. Next, we analyze the second Cushing-Henson conjecture. We extend recent studies in [The Beverton-Holt q-difference equation with periodic growth rate, Difference Equations, Discrete Dynamical Systems, and Applications, Springer-Verlag, Berlin, Heidelberg, New York, 2015, pp. 3-14] and state a modified formulation of the second Cushing-Henson conjecture for the Beverton-Holt \(q\)-difference equation as a generalization of existing formulations.
Keywords: Beverton-Holt equation, Cushing-Henson conjectures, \(q\)-difference equation, periodic solution.
Mathematics Subject Classification: 39A12, 39A13, 92D25.
- J. Barić, R. Bibi, M. Bohner, A. Nosheen, J. Pečarić, Jensen Inequalities on Time Scales, Monographs in Inequalities, vol. 9, Theory and Applications, Element, Zagreb, 2015.
- L. Berezansky, E. Braverman, On impulsive Beverton-Holt difference equations and their applications, J. Differ. Equations Appl. 10 (2004) 9, 851-868.
- R.J.H. Beverton, S.J. Holt On the dynamics of exploited fish populations, Fishery Investigations (Great Britain, Ministry of Agriculture, Fisheries, and Food), vol. 19, H. M. Stationery Off., London, 1957.
- M. Bohner, R. Chieochan, Floquet theory for \(q\)-difference equations, Sarajevo J. Math. 8 (2012) 21, 355-366.
- M. Bohner, R. Chieochan, The Beverton-Holt \(q\)-difference equation, J. Biol. Dyn. 7 (2013) 1, 86-95.
- M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser Boston, Inc., Boston, MA, 2001.
- M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Birkhäuser Boston, Inc., Boston, MA, 2003.
- M. Bohner, S. Stević, H. Warth, The Beverton-Holt difference equation, [in:] Discrete Dynamics and Difference Equations, World Sci. Publ., Hackensack, NJ, 2010, pp. 189-193.
- M. Bohner, S.H. Streipert, The Beverton-Holt equation with periodic growth rate, Int. J. Math. Comput. 26 (2015) 4, 1-10.
- M. Bohner, S.H. Streipert, The Beverton-Holt \(q\)-difference equation with periodic growth rate, [in:] Difference Equations, Discrete Dynamical Systems, and Applications. Springer-Verlag, Berlin, Heidelberg, New York, 2015, pp. 3-14.
- Å. Brännström, D. Sumpter, The role of competition and clustering in population dynamics, Proc. R. Soc. B 272 (2005) 1576, 2065-2072.
- J.M. Cushing, S.M. Henson, Global dynamics of some periodically forced, monotone difference equations, J. Differ. Equations Appl. 7 (2001) 6, 859-872.
- T. Diagana, Almost automorphic solutions to a Beverton-Holt dynamic equation with survival rate, Appl. Math. Lett. 36 (2014), 19-24.
- S.A. Geritz, É. Kisdi, On the mechanistic underpinning of discrete-time population models with complex dynamics, J. Theor. Biol. 228 (2004) 2, 261-269.
- M. Holden, Beverton and Holt revisited, Fisheries Research 24 (1995) 1, 3-8.
- T. Radulescu, V. Radulescu, T. Andreescu, Problems in Real Analysis: Advanced Calculus on the Real Axis, Springer, 2009.
- O. Tahvonen, Optimal harvesting of age-structured fish populations, Mar. Resour. Econ. 24 (2009) 2, 147-169.
- F.-H. Wong, C.-C. Yeh, W.-C. Lian, An extension of Jensen's inequality on time scales, Adv. Dyn. Syst. Appl. 1 (2006) 1, 113-120.
- Martin Bohner
- Department of Mathematics and Statistics, Missouri S&T, Rolla, MO 65409-0020, USA
- Sabrina H. Streipert
- Department of Mathematics and Statistics, Missouri S&T, Rolla, MO 65409-0020, USA
- Communicated by Marek Galewski.
- Received: 2016-07-20.
- Revised: 2017-02-12.
- Accepted: 2017-02-14.
- Published online: 2017-09-28.