Opuscula Math. 36, no. 6 (2016), 735-747
http://dx.doi.org/10.7494/OpMath.2016.36.6.735
Opuscula Mathematica
On locally Hilbert spaces
Abstract. This is an investigation of some basic properties of strictly inductive limits of Hilbert spaces, called locally Hilbert spaces, with respect to their topological properties, the geometry of their subspaces, linear functionals and dual spaces.
Keywords: locally Hilbert space, inductive limit, projective limit, orthocomplemented subspaces, linear functional, dual spaces.
Mathematics Subject Classification: 46A13, 46C05, 46E99.
- G. Allan, On a class of locally convex algebras, Proc. London Math. Soc. 15 (1965), 399-421.
- C. Apostol, \(b^*\)-Algebras and their representations, J. London Math. Soc. 33 (1971), 30-38.
- J. Bognár, Indefinite Inner Product Spaces, Springer Verlag, Berlin 1974.
- A. Gheondea, Operator models for Hilbert locally \(C^*\)-modules, arXiv:1507.07643 [math.OA].
- A. Grothendieck, Topological Vector Spaces, Gordon and Breach, Montreux 1973.
- S. Gudder, Inner product spaces, Amer. Math. Month. 81 (1974), 29-36.
- A. Inoue, Locally \(C^*\)-algebras, Mem. Fac. Sci. Kyushu Univ. Ser. A, 25 (1971), 197-235.
- M. Joiţa, Locally von Neumann algebras, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 42 (1999) 90, 51-64.
- R.V. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, Volume I: Elementary Theory, Graduate Studies in Mathematics, vol. 15, Amer. Math. Soc, 1997.
- Y. Komura, Some examples on locally convex spaces, Math. Annalen 153 (1964), 150-162.
- G. Köthe, Topological Vector Spaces I, Second edition, Springer-Verlag, Berlin 1983.
- R. Meise, D. Vogt, Introduction to Functional Analysis, Oxford University Press, Oxford 1997.
- N.C. Phillips, Inverse limits of \(C^*\)-algebras, J. Operator Theory 19 (1988), 159-195.
- K. Schmüdgen, Über \(LMC^*\)-Algebren, Math. Nachr. 68 (1975), 167-182.
- D. Voiculescu, Dual algebraic structures on operator algebras related to free products, J. Operator Theory 17 (1987), 85-98.
- Aurelian Gheondea
- Bilkent University, Department of Mathematics, 06800 Bilkent, Ankara, Turkey
- Institutul de Matematică al Academiei Române, C.P. 1-764, 014700 Bucureşti, România
- Communicated by P.A. Cojuhari.
- Received: 2016-04-02.
- Accepted: 2016-09-14.
- Published online: 2016-10-29.