Opuscula Math. 36, no. 3 (2016), 315-336
http://dx.doi.org/10.7494/OpMath.2016.36.3.315

Opuscula Mathematica

# Existence and asymptotic behavior of positive solutions of a semilinear elliptic system in a bounded domain

Majda Chaieb
Abdelwaheb Dhifli
Samia Zermani

Abstract. Let $$\Omega$$ be a bounded domain in $$\mathbb{R}^{n}$$ ($$n\geq 2$$) with a smooth boundary $$\partial \Omega$$. We discuss in this paper the existence and the asymptotic behavior of positive solutions of the following semilinear elliptic system \begin{aligned} -\Delta u&=a_{1}(x)u^{\alpha}v^{r}\quad\text{in}\;\Omega ,\;\;\,u|_{\partial\Omega}=0,\\ -\Delta v&=a_{2}(x)v^{\beta}u^{s}\quad\text{in}\;\Omega ,\;\;\,v|_{\partial\Omega }=0.\end{aligned} Here $$r,s\in \mathbb{R}$$, $$\alpha,\beta \lt 1$$ such that $$\gamma :=(1-\alpha)(1-\beta)-rs\gt 0$$ and the functions $$a_{i}$$ ($$i=1,2$$) are nonnegative and satisfy some appropriate conditions with reference to Karamata regular variation theory.

Keywords: semilinear elliptic system, asymptotic behavior, Karamata class, sub-super solution.

Mathematics Subject Classification: 31B25, 34B15, 34B18, 34B27.

Full text (pdf)

1. J. Busca, R. Manàsevich, A Liouville-type theorem for Lane-Emden system, Indiana Univ. Math. J. 51 (2002), 37-51.
2. R. Chemmam, Asymptotic behavior of ground state solutions of some combined nonlinear problems, Mediterr. J. Math. 10 (2013), 1259-1272.
3. R. Chemmam, H. Mâagli, S. Masmoudi, M. Zribi, Combined effects in nonlinear singular elliptic problems in a bounded domain, Adv. Nonlinear Anal. 51 (2012), 301-318.
4. F.-C. Cîrstea, V. Radulescu, Uniqueness of the blow-up boundary solution of logistic equations with absorbtion, C. R. Math. Acad. Sci. Paris 335 (2002) 5, 447-452.
5. F.-C. Cîrstea, V. Radulescu, Boundary blow-up in nonlinear elliptic equations of Bieberbach-Rademacher type, Trans. Amer. Math. Soc. 359 (2007) 7, 3275-3286.
6. Ph. Clément, J. Fleckinger, E. Mitidieri, F. de Thélin, Existence of positive solutions for a nonvariational quasilinear elliptic system, J. Differential Equations 166 (2000), 455-477.
7. R. Dalmasso, Existence and uniqueness of positive solutions of semilinear elliptic systems, Nonlinear Anal. 39 (2000), 559-568.
8. D.G. de Figueiredo, Semilinear elliptic systems, Proceedings of the Second School on Nonlinear Functional Analysis and Applications to Differential Equations, ICTP Trieste 1997, World Scientific Publishing Company (1998), A. Ambrosetti, K.-C. Chang, I. Ekeland (eds), 122-152.
9. D.G. de Figueiredo, P. Felmer, A Liouville-type theorem for elliptic systems, Ann. Sc. Norm. Super. Pisa CI. Sci. 21 (1994), 387-397.
10. D.G. de Figueiredo, B. Sirakov, Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems, Math. Ann. 333 (2005), 231-260.
11. V. Ghanmi, H. Mâagli, V. Radulescu, N. Zeddini, Large and bounded solutions for a class of nonlinear Schödinger stationnary systems, Anal. Appl. (Singap.) 7 (2009) 4, 391-404.
12. M. Ghergu, Lane-Emden systems with negative exponents, J. Funct. Anal. 528 (2010), 3295-3318.
13. J. Giacomoni, J. Hernàndez, P. Sauvy, Quasilinear and singular elliptic systems, Adv. in Nonlinear Anal. 2 (2012), 1-42.
14. H. Mâagli, Asymptotic behavior of positive solutions of a semilinear Dirichlet problem, Nonlinear Anal. 74 (2011), 2941-2947.
15. H. Mâagli, S. Ben Othman, R. Chemmam, Asymptotic behavior of positive large solutions of semilinear Dirichlet problems, Electron. J. of Qual. Theory Differ. Equ. 57 (2013), 1-13.
16. H. Mâagli, S. Turki, Z. Zine el Abidine, Asymptotic behavior of positive solutions of a semilinear Dirichlet problem outside the unit ball, Electron. J. Differential Equations 2013 (2013) 95, 1-14.
17. M. Maniwa, Uniqueness and existence of positive solutions for some semilinear elliptic systems, Nonlinear Anal. 59 (2004), 993-999.
18. V. Radulescu, Singular phenomena in nonlinear elliptic problems: From blow-up boundary solutions to equations with singular nonlinearities, [in:] M. Chipot (ed.), Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 4 (2007), pp. 483-591.
19. V. Radulescu, Qualitative Analysis of nonlinear elliptic partial differential equations: monotonicity, analytic and variational methods, Contemporary Mathematics and its Applications, 6. Hindawi Publishing Corporation, New York, 2008.
20. E. Seneta, Regularly Varying Functions, Lectures Notes in Mathematics 508, Springer-Verlag, Berlin-New York, 1976.
21. Z. Zhang, Positive solutions of Lane-Emden systems with negative exponents: Existence, boundary behavior and uniqueness, Nonlinear Anal. 74 (2011), 5544-5553.
• Majda Chaieb
• Faculté des Sciences de Tunis, Département de Mathématiques, Campus Universitaire, 2092 Tunis, Tunisia
• Abdelwaheb Dhifli
• Faculté des Sciences de Tunis, Département de Mathématiques, Campus Universitaire, 2092 Tunis, Tunisia
• Samia Zermani
• Faculté des Sciences de Tunis, Département de Mathématiques, Campus Universitaire, 2092 Tunis, Tunisia
• Communicated by Vicentiu D. Radulescu.
• Revised: 2015-10-27.
• Accepted: 2015-11-15.
• Published online: 2016-02-21. 