Opuscula Math. 36, no. 2 (2016), 265-278
http://dx.doi.org/10.7494/OpMath.2016.36.2.265
Opuscula Mathematica
Asymptotic behavior of solutions of discrete Volterra equations
Abstract. We consider the nonlinear discrete Volterra equations of non-convolution type \[\Delta^m x_n=b_n+\sum\limits_{i=1}^{n}K(n,i)f\left(i,x_i\right), \quad n\geq 1.\] We present sufficient conditions for the existence of solutions with prescribed asymptotic behavior, especially asymptotically polynomial and asymptotically periodic solutions. We use \(\operatorname{o}(n^s)\), for a given nonpositive real \(s\), as a measure of approximation. We also give conditions under which all solutions are asymptotically polynomial.
Keywords: Volterra difference equation, prescribed asymptotic behavior, asymptotically polynomial solution, asymptotically periodic solution, bounded solution.
Mathematics Subject Classification: 39A10, 39A22.
- C.T.H. Baker, Y. Song, Periodic solutions of non-linear discrete Volterra equations with finite memory, J. Comput. Appl. Math. 234 (2010) 9, 2683-2698.
- M.R. Crisci, V.B. Kolmanovskii, E. Russo, A. Vecchio, Boundedness of discrete Volterra equations, J. Math. Anal. Appl. 211 (1997), 106-130.
- V.B. Demidovič, A certain criterion for the stability of difference equations, Diff. Urav. 5 (1969), 1247-1255 [in Russian].
- J. Diblík, M. Růžičková, E. Schmeidel, Asymptotically periodic solutions of Volterra difference equations, Tatra Mt. Math. Publ. 43 (2009), 43-61.
- J. Diblík, M. Růžičková, L.E. Schmeidel, M. Zbaszyniak, Weighted asymptotically periodic solutions of linear Volterra difference equations, Abstr. Appl. Anal. (2011), Art. ID 370982, 14 pp.
- J. Diblík, E. Schmeidel, On the existence of solutions of linear Volterra difference equations asymptotically equivalent to a given sequence, Appl. Math. Comput. 218 (2012) 18, 9310-9320.
- T. Gronek, E. Schmeidel, Existence of bounded solution of Volterra difference equations via Darbo's fixed-point theorem, J. Difference Equ. Appl. 19 (2013) 10, 1645-1653.
- I. Győri, E. Awwad, On the boundedness of the solutions in nonlinear discrete Volterra difference equations, Adv. Difference Equ. 2 (2012), 1-20.
- I. Győri, F. Hartung, Asymptotic behavior of nonlinear difference equations, J. Difference Equ. Appl. 18 (2012) 9, 1485-1509.
- I. Győri, L. Horvath, Asymptotic representation of the solutions of linear Volterra difference equations, Adv. Difference Equ. (2008), ID 932831, 22 pp.
- I. Győri, D.W. Reynolds, On asymptotically periodic solutions of linear discrete Volterra equations, Fasc. Math. 44 (2010), 53-67.
- V. Kolmanovskii, L. Shaikhet, Some conditions for boundedness of solutions of difference Volterra equations, Appl. Math. Lett. 16 (2003), 857-862.
- R. Medina, Asymptotic behavior of Volterra difference equations, Comput. Math. Appl. 41 (2001) 5-6, 679-687.
- J. Migda, Asymptotic properties of solutions of nonautonomous difference equations, Arch. Math. (Brno) 46 (2010), 1-11.
- J. Migda, Asymptotically polynomial solutions of difference equations, Adv. Difference Equ. 92 (2013), 16 pp.
- J. Migda, Approximative solutions of difference equations, Electron. J. Qual. Theory Differ. Equ. 13 (2014), 1-26.
- J. Migda, Approximative full solutions of difference equations, Int. J. Difference Equ. 9 (2014), 111-121.
- M. Migda, J. Migda, On the asymptotic behavior of solutions of higher order nonlinear difference equations, Nonlinear Anal. 47 (2001) 7, 4687-4695.
- M. Migda, J. Migda, Bounded solutions of nonlinear discrete Volterra equations, accepted for publication in Math. Slovaca.
- M. Migda, J. Morchało, Asymptotic properties of solutions of difference equations with several delays and Volterra summation equations, Appl. Math. Comput. 220 (2013), 365-373.
- J. Morchało, Volterra summation equations and second order difference equations, Math. Bohem. 135 (2010) 1, 41-56.
- J. Popenda, Asymptotic properties of solutions of difference equations, Proc. Indian Acad. Sci. Math. Sci. 95 (1986) 2, 141-153.
- A. Zafer, Oscillatory and asymptotic behavior of higher order difference equations, Math. Comput. Modelling 21 (1995) 4, 43-50.
- Janusz Migda
- Adam Mickiewicz University, Faculty of Mathematics and Computer Science, Umultowska 87, 61-614 Poznań, Poland
- Małgorzata Migda
- Poznan University of Technology, Institute of Mathematics, Piotrowo 3A, 60-965 Poznań, Poland
- Communicated by Josef Diblík.
- Received: 2015-02-22.
- Revised: 2015-08-10.
- Accepted: 2015-08-14.
- Published online: 2015-12-18.