Opuscula Math. 36, no. 2 (2016), 153-187
http://dx.doi.org/10.7494/OpMath.2016.36.2.153
Opuscula Mathematica
Free probability on Hecke algebras and certain group C*-algebras induced by Hecke algebras
Abstract. In this paper, by establishing free-probabilistic models on the Hecke algebras \(\mathcal{H}\left(GL_{2}(\mathbb{Q}_{p})\right)\) induced by \(p\)-adic number fields \(\mathbb{Q}_{p}\), we construct free probability spaces for all primes \(p\). Hilbert-space representations are induced by such free-probabilistic structures. We study \(C^{*}\)-algebras induced by certain partial isometries realized under the representations.
Keywords: free probability, free moments, free cumulants, Hecke algebras, normal Hecke subalgebras, representations, groups, group \(C^{*}\)-algebras.
Mathematics Subject Classification: 05E15, 11R47, 46L54, 47L15, 47L55.
- I. Cho, Operators induced by prime numbers, Methods Appl. Math. 19 (2013) 4, 313-340.
- I. Cho, Representations and corresponding operators induced by Hecke algebras, Complex. Anal. Oper. Theory, DOI: 10.1007/s11785-014-0418-7, (2014). http://dx.doi.org/10.1007/s11785-014-0418-7
- I. Cho, \(p\)-adic Banach space operators and adelic Banach space operators, Opuscula Math. 34 (2014) 1, 29-65.
- I. Cho, Free distributional data of arithmetic functions and corresponding generating functions, Complex. Anal. Oper. Theory 8 (2014) 2, 537-570.
- I. Cho, Dynamical systems of arithmetic functions determined by primes, Banach J. Math. Anal. 9 (2015), 173-215.
- I. Cho, Classification on arithmetic functions and corresponding free-moment \(L\)-functions, Bulletin Korean Math. Soc. (2015), to appear.
- I. Cho, T. Gillespie, Free probability on the Hecke algebra, Complex Anal. Oper. Theory, DOI: 10.1007/s11785-014-0403-1, (2014). http://dx.doi.org/10.1007/s11785-014-0403-1
- I. Cho, P.E.T. Jorgensen, Krein-space representations of arithmetic functions dertermined by primes, Alg. Rep. Theo. 17 (2014) 6, 1809-1841.
- T. Gillespie, Superposition of zeroes of automorphic \(L\)-functions and functoriality, PhD Thesis, Univ. of Iowa, (2010).
- T. Gillespie, Prime number theorems for Rankin-Selberg \(L\)-functions over number fields, Sci. China Math. 54 (2011) 1, 35-46.
- F. Radulescu, Random matrices, amalgamated free products and subfactors of the \(C^{*}\)-algebra of a free group of nonsingular index, Invent. Math. 115 (1994), 347-389.
- R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Amer. Math. Soc. Mem. 132 (1998) 627.
- D. Voiculescu, K. Dykemma, A. Nica, Free Random Variables, vol. 1, CRM Monograph Series, 1992.
- V.S. Vladimirov, I.V. Volovich, E.I. Zelenov, \(p\)-Adic Analysis and Mathematical Physics, vol. 1, Ser. Soviet & East European Math., World Scientific, 1994.
- Ilwoo Cho
- St. Ambrose University, Department of Mathematics, 421 Ambrose Hall, 518 W. Locust St., Davenport, Iowa, 52803, USA
- Communicated by P.A. Cojuhari.
- Received: 2015-03-30.
- Revised: 2015-05-19.
- Accepted: 2015-07-06.
- Published online: 2015-12-18.